Системы земледелия во влажно-субтропической зоне России

Рындин А.В. – академик РАН, доктор сельскохозяйственных наук

Малюкова Л.С. - профессор РАН, доктор биологических наук

ЕГО ИМПЕРАТОРСКОЕ ВЕЛИЧЕСТВО

воспослидовавшее миний въ Департаменти Государственной Экопомін Государственнаго Совпта, в бо от рити 11 садеругания помін Государственнаго Совпта, в бо от рити 11 садеругания во го вущити воги,

ВЫСО ЧАЙШЕ утвердить соизволиль и повельль исполнить.

Предспдатель Государственнаго Совпта (подписаль), Миханив.

M. Anprier 1894 r.

МИВНІЕ ГОСУДАРСТВЕННАГО СОВЪТА.

Выписано изъ журнала Цепартамента Государственной

Государственный Совптг, ог Департаменть Государственной Экономіи, разсмотрпвъ npedemas.renie Alter Louge Muyeyeembe all anspumin a esseppeasie и садовым на ведений вам. Едины uleru municiono marcoficaro.

I. Разришить харосудовованию ма предиеть прашаго назначения предить во 35.000 рудией,

1894 год

Всероссийский научно-исследовательский институт цветоводства и субтропических культур ведет свою историю с момента основания Сочинской сельскохозяйственной и садовой опытной станции.

В первые же годы (1896 г.) была создана лаборатория агрохимии и почвоведения

Изучение влажности почв

Процессы нитрификации

Состав грунтовых вод

Химический состав плодов

1915-1916 гг. - первые опыты с удобрениями

125 летний период ученые внесли огромный вклад становление и дальнейшее развитие важнейших отраслей сельского хозяйства — промышленного цветоводства и субтропического садоводства.

Итогом работ является возделывание на территории России таких культур как чай, цитрусовые, фундук, лавр, хурма, фейхоа, актинидия деликатесная и другие.

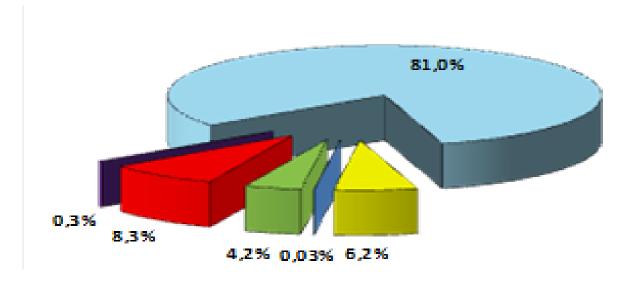
Благодаря ученым и практикам сформирован сегодняшний зеленый облик курорта, где растения-интродуценты стали ландшафтообразующими и средообразующими породами.

Системы ведения культур

- Технологии возделывания и размножения цветочнодекоративных и субтропических культур (в т.ч. чай, орехоплодные, актинидия сладкая, промышленные цветочные культуры).
- Технологии применения полимерных каркасов в укрытиях для защиты цитрусовых от мороза; технологии выгонки луковичных культур (в том числе редких и исчезающих) и роз.
- Перспективные подвои и лучшие способы выращивания посадочного материала южных плодовых культур.

За этот период исторически сформировались научные школы в разных областях субтропического и декоративного растениеводства

- субтропическое растениеводство
- чаеводство
- южное плодоводство
- цветоводство
- селекция
- агрохимия и почвоведение
- физиология и биохимия растений
- защита растений
- биотехнология



Процессы агрогенной трансформации почв

- усиление эрозионных процессов
- ацидизация почв
- изменение физико-механических свойств почв
- изменение состава почвенно-поглощающего комплекса
- дегумификация и изменение качественного состава гумуса
- зафосфачивание почв
- увеличение подвижности ряда важнейших биогенных элементов
- изменение биологической активности почв

Структура земель города Сочи по категориям землепользователей

- Земли сельскохозяйственного назначения 14353 га.
- ■Земли поселений -29301 га.
- Земли промышленности, транспорта, связи и иного назначения 1303 га.
- Земли особоохраняемых территорий 283881 га.
- Земли лесного ф онда -21648 га.
- Земли водного фонда 121 га

Метеорологические показатели

Метеорологические показатели			Вариационно-статистические показатели				
			M	Max	Min	σ	V, %
	°C	За год	14,3	16,5	12,9	0,8	6
	Среднесуточная температура,	Период вегетации	18,7	20,5	17,3	0,8	4
	шера	май-сентябрь	20,7	23,1	19,4	0,9	4
	I Tem	март-апрель	10,2	13,0	7,1	1,5	15
	чная	1 декада мая	14,0	17,8	11,1	1,8	13
	суто	июнь-август	23,6	25,8	21,6	1,1	5
	эдне	июль-август	22,7	26,1	20,8	1,2	5
	Cpe	сентябрь	20,	23,1	16,7	1,5	7
rbo		За год	1677	2098	1006	278	17
вое количество	эсадков, мм	Период вегетации	877	1184	381	242	28
KOJ	ДКОВ	май-сентябрь	579	911	267	171	30
BOE	oca	июнь-август	311	584	63	151	49

Эрозионные процессы (данные Козина В.К., 2009 г.)

- В среднем дожди выпадают 141 день, 60 % которых относятся к эрозионноопасным.
- Ливневый характер дождей в период вегетации усиливает смыв почвы: от 95 т почвы до 145 т с 1 га.
- Глубина базиса расчленения рельефа от 200–500 м до 800–1200 м.
- Густота горизонтального расчленения достигает 2,5–3,9 км/км².
- Из интенсивного пользования на побережье водная эрозия вывела более 2 тыс. га земель.

Комплекс мелиоративных мероприятий по освоению склонов

- культуртехнические работы по расчистке территории; предварительная мелиорация улучшение рельефа методом вертикальной планировки и террасирования, организованный сброс подземных вод (дренажи);
- окультуривание почв (рыхление, посев сидератов, удобрения);
- противоэрозионные мероприятия —поверхностная мелиоративная сеть, фитомелиорация, организация территории, содержание и обработка почвы;
- закладка многолетних насаждений окультуривание посадочной полосы, контурное и поперечное направление рядов насаждений, организация территории сада);
- минимальная обработки почв в садах при эксплуатации.

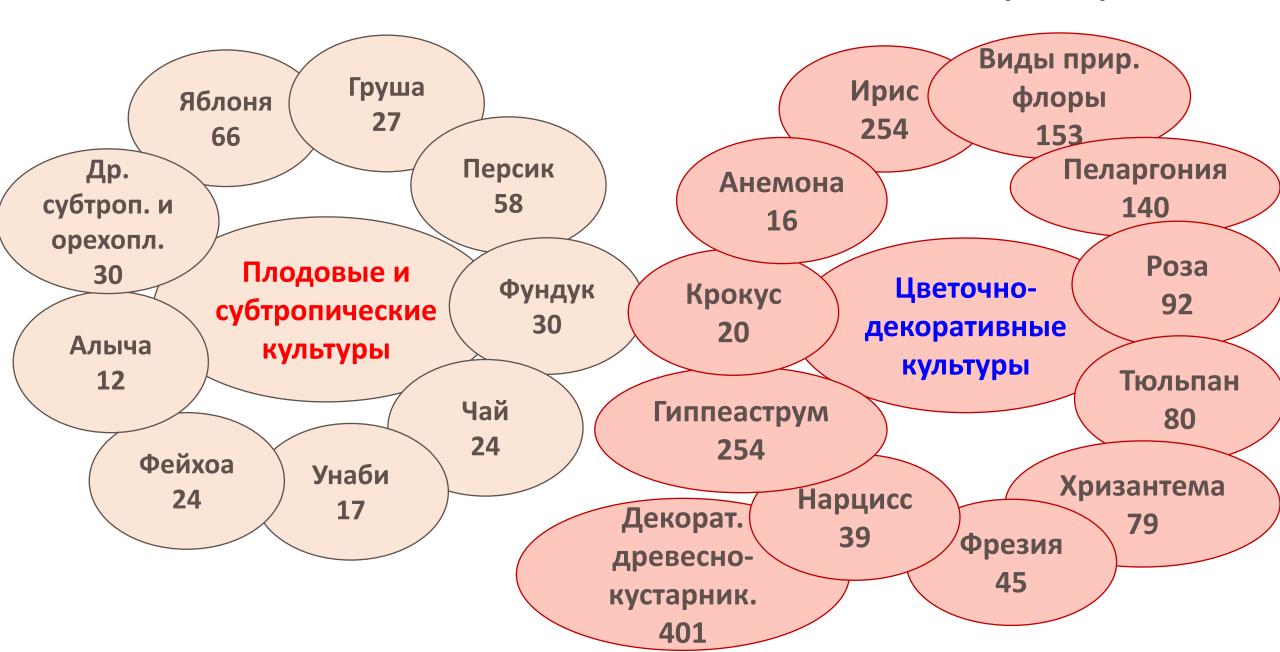
Система содержания почвы (по данным Бесединой Т.Д.)

- Паро-сидеральная система содержания почвы на склонах крутизною до 5 градусов, относящихся к слабоэрозионным землям, смыв почвы составляет 5–30 т/га в год.
- Паро-дерновая система содержания почвы на склонах крутизной 5—10 °, обладающих средней категорией эрозионной опасности, смыв почвы достигает 30—60 т/га в год.
- Дерново-перегнойная система содержания на покатых склонах крутизной 10–15 °, где развивается сильная эрозия и почва смывается до 250 т/га в год.

Адаптивно-ландшафтные системы земледелия

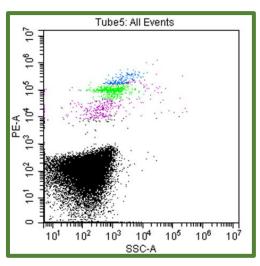
устойчивое функционирование агроэкосистем в нестабильных метеорологических условиях

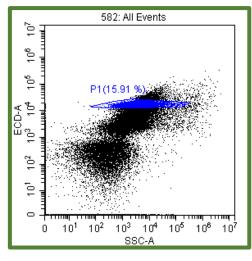
дифференциация сельскохозяйственных угодий с выделением агроэкологически однотипных участков с учетом базисных особенностей территории (рельефа, типа почв, особенностей микроклимата), адаптивного потенциала культивируемых растений (их потенциальной продуктивности и экологической устойчивости) и мелиорирующих техногенных средств (мелиорации и агротехники).

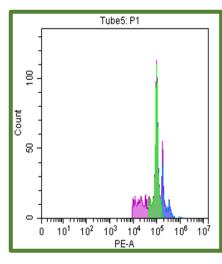

Основные направления

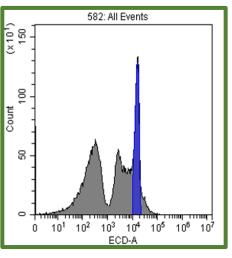
Адаптивные сорта

Оптимальное размещение культур


«Адаптивный» технологический комплекс


Генетические коллекции, насчитывают более 2,5 тыс. сортообразцов




Генетические исследования растительных ресурсов

Метод проточной цитометрии для анализа размера генома в коллекции чая

внешний стандарт – Лук (Allium cepa)

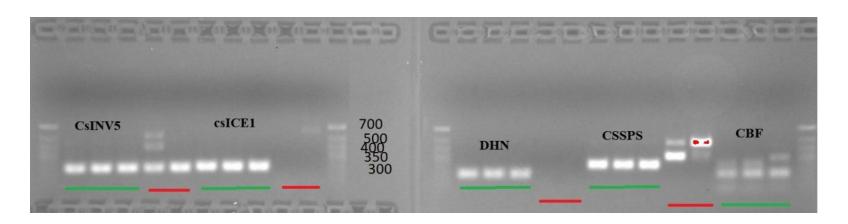
Чай (Camellia sinensis) № 582

Лук (Allium cepa)

Чай (Camellia sinensis) № 582

Поиск популяции ядер 2п

Диаграмма проточной цитометрии

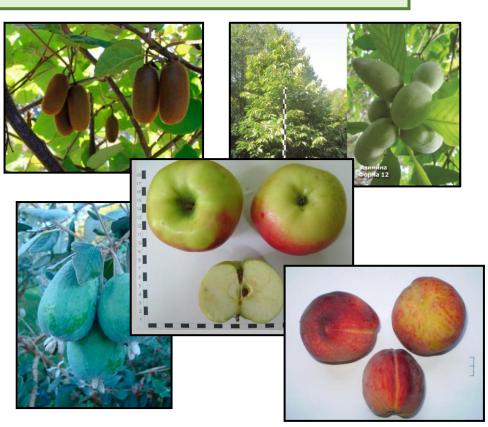

Данные проточной цитометрии Camellia sinensis # 582

Tube Name: 582 Sample ID:

Population	Events	% Total	% Parent	Events/µL(V)	CV PE-A	CV ECD-A	Mean PE-A	Mean ECD-A
All Events	51805	100.00	100.00 %	1131.45	173.51 %	171.40 %	21275.0	5245.0
P1	8244	15.91 %	15.91 %	180.05	15.14 %	15.14 %	67205.4	16620.1

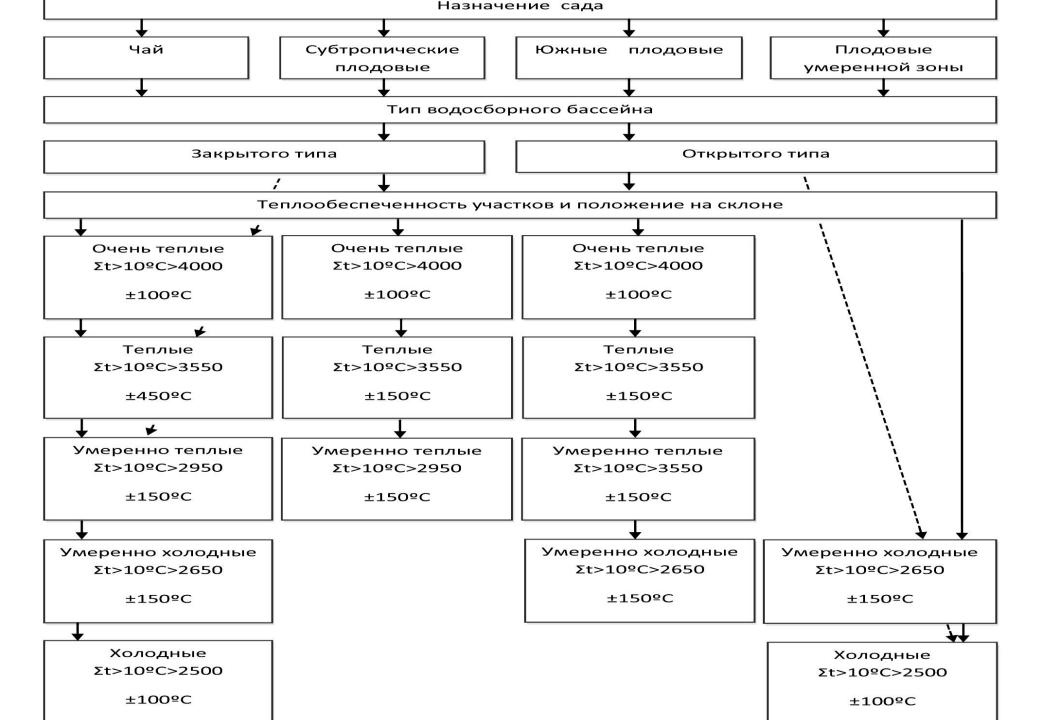
Для выведения новых сортов применяются современные методы структурной и функциональной геномики

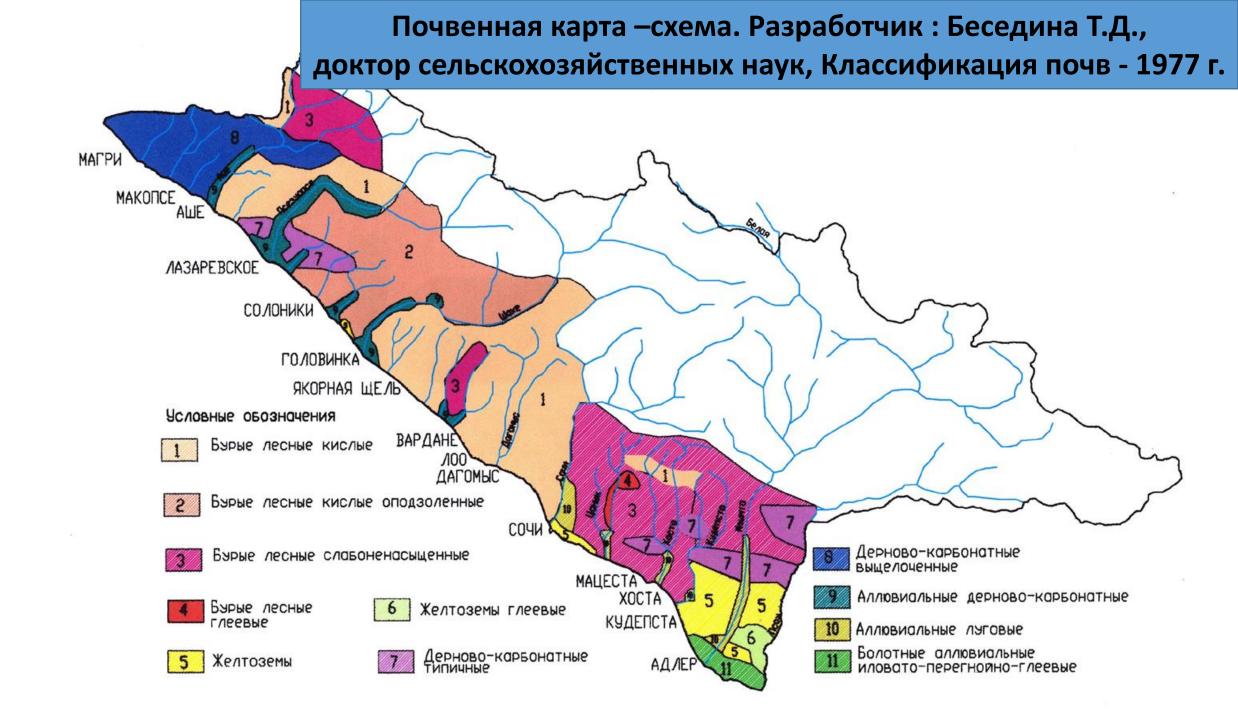
• Поиск генов засухоустойчивости и морозоустойчивости - Поможет выявить роль различных генов в повышенной устойчивости к засухе и заморозкам и подобрать к ним генетические маркеры для ускорения селекции (исследования проводятся при поддержке РНФ проект 18-76-10001 и РФФИ проект 19-416-233033)- руководитель Самарина Л.С.


Study of several cold-related genes by qRT-PCR with cDNA of tea Исследование экспрессии генов холодоустойчивости методом qRT-PCR с кДНК чая

Результаты селекционных исследований за последние 40 лет

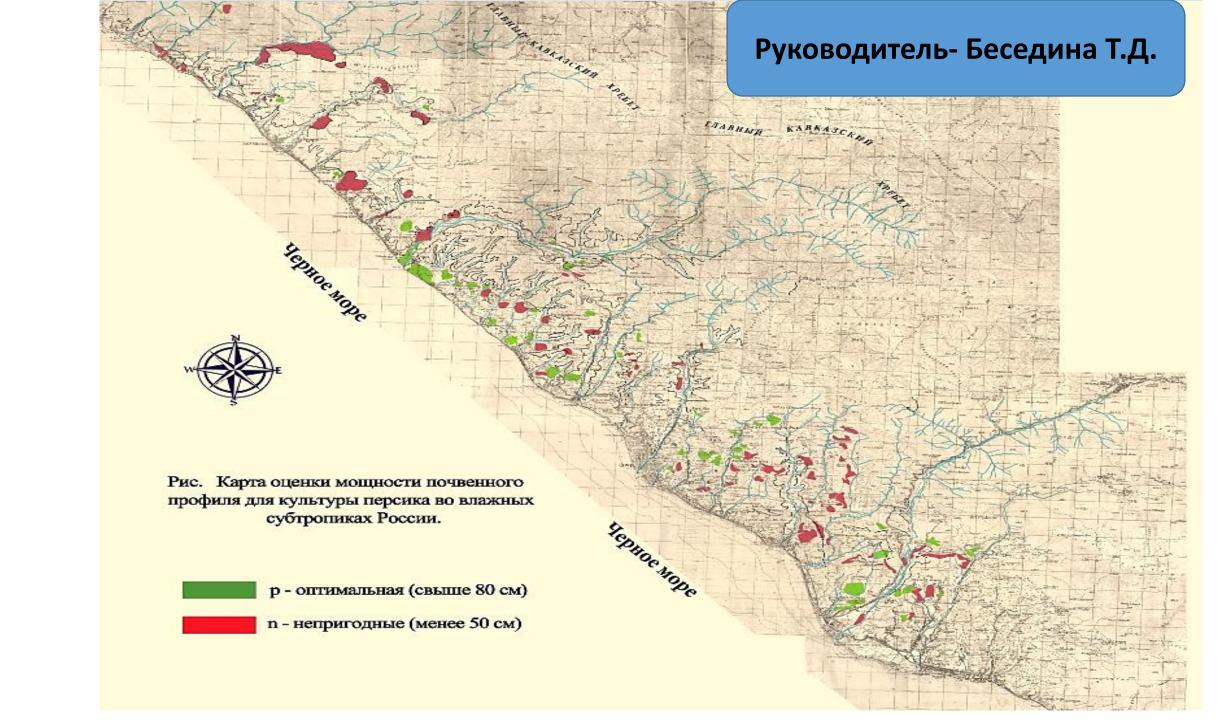
42 сорта южных плодовых и субтропических культур





Характеристика агроклиматических районов Черноморского побережья (Сочи) по теплообеспеченности с учётом элементов рельефа

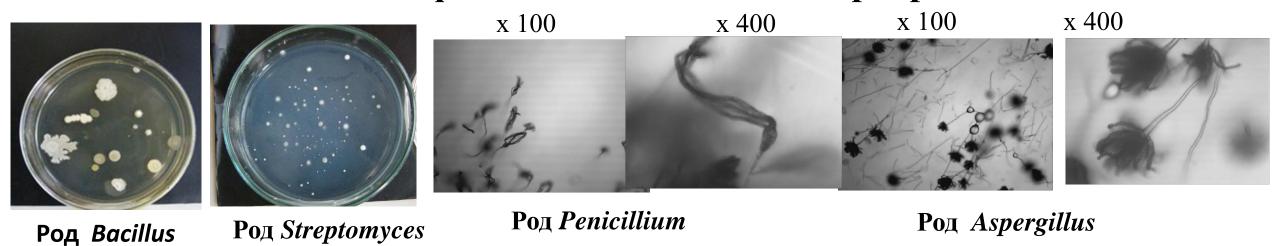
	-				•		•
Агроклиматиче	оклиматиче Название Высота над Сумма активных температур >10°C в соответствии с крутизной					рутизной склоно	
с- кий район	станции	уровнем моря, м	2°	5°	10°	15°	20°
		1	На северных с	склонах			
I	Сочи АМС	57	3942	3862	3730	3599	3467
II	Калиновое озеро	450	3616	3496	3435	3258	3139
III	Красная поляна	564	2924	2865	2767	2670	2337
IV	Ачишхо	1880	1011	900	956	923	889
			На южных си	клонах			
I	Сочи АМС	57	4061	4170	4342	4513	4689
II	Калиновое озеро	450	3676	3840	3998	4156	4318
III	Красная поляна	564	3013	3093	3221	3348	3478
IV	Ачишхо	1880	1041	1069	1113	1157	1202
		H	Іа восточных	склонах			
I	Сочи АМС	57	3970	3990	3866	3802	3738
II	Калиновое озеро	450	3656	3628	3560	3501	3443
III	Красная поляна	564	2945	2915	2868	2821	2773
IV	Ачишхо	1880	1018	1010	991	975	958
]	На западных с	склонах			
Ι	Сочи АМС	57	4043	4070	4146	4222	4297

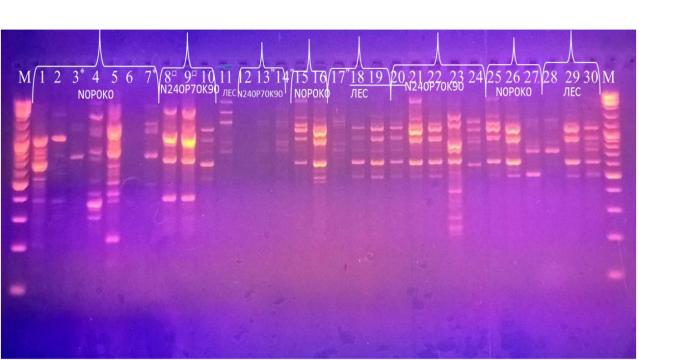


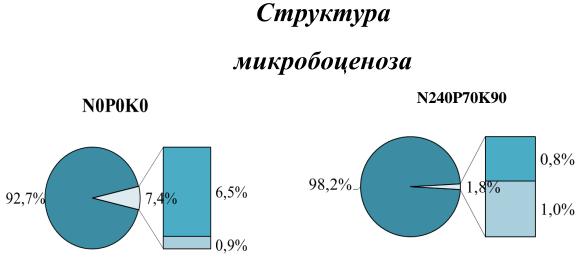
Зонирование для оптимального размещения культуры чая (Бушин П.М., Беседина Т.Д.)

Номер	Плош	адь в	Средневзвешенный	Урожайность
микрозоны	га	% бонитет в баллах		чая, ц/га
Первая І	452,0	31,6	81	64,8
Вторая I I	110,0	7,7	70	56,0
Третья І І І	661,0	46,3	54	43,5
Четвёртая IV	206,0	14,4	37	30,0
Итого	1428,0	100	60	48,6

Экологизация технологического комплекса


Новые виды удобрений и пестицидов, обеспечивающих высокий положительный эффект при применении в низких дозах


Органические удобрения, в том числе эффективное использование растительных остатков в агроценозах


Эффективные системы полива

Потенциал почвенного микробоценоза

Идентификация почвенных микроорганизмов

ДЛИТЕЛЬНЫЕ ПОЛЕВЫЕ ОПЫТЫ С МАКРО- И МИКРОУДОБРЕНИЯМИ.

Корневое применение N, P, K, Ca, Mg, B,

Основные принципы эколого-ландшафтной агрохимии

классические задачи агрохимии в регулировании биологического круговорота веществ в агроценозах

с учетом геохимического стока и аккумуляции биогенных элементов с учетом характеристик ландшафтов по тепло- и влагоресурсам

Критерии подбора системы удобрения

Оптимальные параметры плодородия бурых лесных кислых почв под культурой чая

№ п/п	Показатели	Параметры
1	Высота над уровнем моря, м	70–200
2	Экспозиция склона (по данным Козина и др., 1992)	северо-западная, западная
3	Мощность почвенного профиля, см	не менее 100
4	Наличие признаков оглеения (глубина), см	нет
5	Содержание физической глины (%) в слое, см: 0-20/20-40 40-60	69–70 / 70–75 75–80
6	Объемная масса (г/см³) в слое, см: 0–20 / 20–40 40–60	не более 1,0-1,1 / 1,2-1,3 1,3-1,4
7	рН _{КСІ} в слое, см: 0–40 / 50–100	3,1-3,5 / 3,9-4,0
8	Гидролитическая кислотность (ммоль экв/100 г) в слое, см: 0-40 / 50-100	25-44 / 50-60
9	Сумма обменных оснований (<i>ммоль экв</i> /100 г) в слое, см: 0-40 / 50-100	3–7 / 7–10
10	Степень насыщенности почв основаниями (%) в слое, см: 0-40 / 50-100	10–20 / <49
11	Подвижный алюминий (мг/100 г) в слое, см: 0–40	60–140
12	Гумус (%) в слое, см: 0-20 / 20-40	5–7 / 3–5
13	Азот легкогидролизуемый (мг/кг) в слое, см:0-20 / 20-40	110–140 / 90–120
14	Калий подвижный (K ₂ O, мг/кг) в слое, см: 0-20 / 20-40	410–500 / 310–400
15	Фосфор подвижный (P2O5, мг/кг) в слое, см: 0-20 / 20-40	410–500 / 210–250
16	Содержание микроэлементов (мг/кг) в слое 0-40 см: Fe/Mn Zn/Cu	200–350 / 100–250 7,5–10,0 / 2,0–2,5

Модель (уравнение регрессии) для расчета (прогноза) валовых сборов чайного листа, R=0,75

Независимые переменные (структура модели)	Стандарти- зованный коэффи- циент	Коэффи- циент при независи- мом признаке	Стандарт- ная ошибка	<i>t</i> - критери й	Уровень значимос- ти, р
Св. член		95,30438	39,70016	2,40060	0,017160
Урожай	0,313351	0,31477	0,06031	5,21924	0,000000
Возраст (В ²)	-0,527537	-0,15706	0,01701	-9,23553	0,000000
Т _{3 (март)}	0,418672	10,12261	1,39272	7,26821	0,000000
Т _{4 (апрель)}	-0,155221	-3,51352	1,13247	-3,10252	0,002158
Т _{5 (май)}	-0,174643	-6,66180	2,30031	-2,89605	0,004142
R _{3 (март)}	0,586335	0,32834	0,03691	8,89555	0,000000
R _{5 (май)}	-0,183045	-0,08823	0,02620	-3,36726	0,000889
Nx(pH + 1)	0,333554	2,37036	0,37403	6,33732	0,000000

Основные пути изменения плодородия почв чайных плантаций в зависимости от удобрения плантаций. Руководитель Козлова Н.В.

Поддержание и воспроизводство плодородия

Рост плодородия с последующим убыванием

Убывающее плодородие

Поддержание и воспроизводство плодородия

Урожайность 44-100 ц/га, в зависимости от метеорологических условий

Легкогидролизуемый азот Достигнутое итоговое содержание – 110/90 мг/кг, обеспеченность –средняя. Разница с исходным-+28/+25, скорость изменения- +1 мг/кг в год

Подвижный калий (по Ониани) Достигнутое итоговое содержание — 430-500 мг/кг, Обеспеченность —средняя. Сохранение соотношения различных форм калия в почве

Подвижные фосфаты (по Ониани) Достигнутое итоговое содержание – 620/400 мг/кг, обеспеченность –высокая. Разница с исходным-+220/+50, скорость изменения- +80 мг/кг за 10 лет

Кислотность

рН сол. - 3,46/3,61. Оптимальный для культуры. Разница с исходным- - 0,51/-0,28 %, скорость изменения -0,019 единиц рН в год

Гумус

Достигнутое итоговое содержание - 4,63/3,30 %, Градация – среднее. Разница с исходным - +1,5/+0,8 %, скорость изменения - +0,06 % в год

Снижение ферментативной активности и численности актинобактерий относительно эталонной почвы (лес) в пределах уровня достоверности.

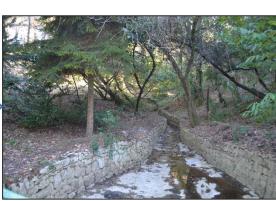
Биоиндикация состояния агрогенных почв посредством анализа её ферментативной и микробиологической активности. Руководитель Малюкова Л.С.

Шкалы нормирования агрогенной нагрузки для бурых лесных почв относительно почв фоновой территории, %

Уровень воздействия	Каталаза	Уреаза	Инвертаза	Фосфатаза				
	Бурые лесные кислые почвы							
Допустимый	>65	>50	>40	>70				
Предельно допустимый	45 – 65	30 – 50	30 – 40	30 – 70				
Критический	20 – 45	20 – 30	20 – 30	20 – 30				
Недопустимый	<20	<20	<20	<20				
	Бурые лесные слабоненасыщенные почвы							
Допустимый	>80	>60	>80	>75				
Предельно допустимый	65 – 80	35 – 60	35 – 80	55 – 70				
Критический	50 – 65	30 – 35	30 – 35	55 – 50				
Недопустимый	<50	<30	<30	<50				

Диагностический показатель и степень его изменения	Степень аг	Степень агрогенного изменения почвы по группе критериев			
	Слабая	Средняя (допустимая)	Сильная (критическая)		
Численность актинобактерий	слабая	средняя	высокая		
Численность микромицетов	слабая	слабая-средняя	средняя-высокая		
Численность сапрофитных бактерий	слабая	слабая-средняя	средняя-высокая		
Структура микробоценоза (соотношение численности сапротрофных бактерий, актинобактерий и микромицетов)	аналогична фоновой почве	снижение доли одной из групп мицелиального комплекса	снижение доли актинобактерий микромицетов		

Эколого-геохимическое состояние почв и сопряженных с ними сред урболандшафтов города Сочи Руководитель - Захарихина Л.В.


в связи с процессами миграции и трансформации химических элементов и загрязняющих веществ в разных элементарных ландшафтах, в миграционных цепях:

горная порода, источники техногенеза— почва— растения; горная порода, источники техногенеза— почва— донные отложения— поверхностные воды.

Благодарю за внимание

