

Assessment of soil erosion using nuclear techniques E. Fulajtar

Typical soils of loess hilly lands in Western Slovakia (Soil classification according to WRB, 1994)

Luvi-Haplic ChernozemCalcic LuvisolCalcaric RegosolO r i g i n a ls o i l sFinal stage of erosion

Joint FAO/IAEA Programme Nuclear Techniques in Food and Agriculture

Atoms for Food and Agriculture: Meeting the Challenge

Tunnel erosion

Fallout radionuclide methods used in soil erosion research

Rain simulation in field

Methods for soil erosion assessment

Pedomorphic method (estimation based on the changes of soil horizonation) Volumetric method (measuring the volume of rills and gullies). Geodetic method (measuring the changes in soil surface as referred to stable points). Erosion measurements at experimental plots (total collection of soil sediments) Hydrological methods (suspended sediment load) Rain simulation (use of artificial rainfall to create erosion: a) in field, b) in laboratory) Erosion models (USLE, EPIC, WEPP, EUROSEM ...) Fallout radionuclide methods (¹³⁷Cs, ²¹⁰Pb, ⁷Be)

8. Fallout radionuclide methods

Direct measurement of erosion rates and sediment accumulation

- surveying methods
- erosion plots
- indirect methods (e.g. suspended sediment monitoring)
- nuclear techniques

Erosion plots

Hydrological profile with suspended sediment sampler

Erosion plots (Japan)

Erosion pins

JAEA Joint FAO/IAEA Programme

measure soil accumulation or loss along pins precision low: $\pm 1 \text{ mm} => 12 \text{ t} \text{ ha}^{-1}$

point values

Rainfall simulation

reproduces impact of natural rain with known KE control on experimental conditions investigate quickly varied systems limitation of slope length

Field rain simulator

Laboratory rainfall simulator

Fallout radionuclide methods

Origin of fallout radionuclides

- ¹³⁷Cs (half-life of 30.2 years) originated from (a) atmospheric bomb tests (fallout from 1954 to mid-1980s with peak in 1963) and from (b) the Chernobyl power plant accident in 1986.
- ²¹⁰Pb (half-life of 22.8 years) has geogenic origin. It is a product of ²²²Rn decay taking part in both soilscape and atmosphere. ²¹⁰Pb originating in atmosphere deposits on land surface and enriches the soil upper layer (²¹⁰Pb_{ex})
- ⁷Be (half-life of 53,3 days) is a cosmogenic radionuclide produced by the bombardment of the atmosphere by cosmic rays causing spallation of O and N atoms.

Overview of Environmental Radionuclides

Radionuclide	Origin	Half-life	Emission	Energy
⁷ Be	Natural: cosmogenic	53 days	Gamma (10,3)	477 keV
¹³⁴ Cs	Artificial: Chernobyl	250 days	Gamma (98,0)	604 keV
²¹⁰ Pb	Natural: geogenic	22 years	Gamma (4,06)	46 keV
¹³⁷ Cs	Artificial: Atmosferic bomb tests and Chernobyl	30 years	Gamma (85,0)	661 keV
²³⁹ Pu	Artificial: Atmosferic bomb tests	24000 years	Alfa	

⁹⁰Sr Artificial: Atmosferic bomb tests

Origin of fallout radionuclides (FRN)

Three radionuclides (137Cs, 210Pb and 7Be) falling with precipitation from atmosphere (hence termed "fallout radionuclides") can be used to measure the soil erosion rates

137Cs - antropogenic origin:

release of ISTCs by nuclear weapon tests

release of ^{ton}Cs by nuclear power plant accidents

global circulation of PTCs

with precipitation ⁷Be – cosmogenic origin:

Be fallout with precipitation

²¹⁰Pb – geogenic origin:

evaporation of TRN from soil decay of ZZRn to ZMPb in atmosphere ZMPb fallout with precipitation

Global distribution of bomb-derived ¹³⁷Cs

Fallout records of ¹³⁷Cs

Fallout Radionuclides: atom bomb testing

Global fallout (clear time-scale)

(Playford et al., 1990)

Food and Agriculture Organization of the United Nations

International Atomic Energy Agency

Fallout radionuclides: Chernobyl accident

Clear time-scale, regional, and spatially heterogeneous

Geographical distribution and spatial variability of radionuclide deposition

Regional scale → Local scale → Field scale

Map of cansium-137 deposits over Europe insteaduately after the Chevrolyl accident (source: European Atlus EC/ICCE 1998 and IRSN). No data is available for the Bultum.

> Source: European Atlas EC/IGCE 1998 and IRSN

As of April 29 2011; Source: MEXT and DOE

Origin of ²¹⁰Pb and ⁷Be

Half-life: 22.3 years

Origin: Natural geogenic

Half-life: 53.3 days Origin: Natural cosmogenic

Walling, 2004

Origin of ²¹⁰Pb and ⁷Be

Half-life: 22.3 years

Origin: Natural geogenic

Half-life: 53.3 days Origin: Natural cosmogenic

Food and Agriculture Organization of the United Nations

International Atomic Energy Agency

Walling, 2004

Principle of ¹³⁷Cs method

Principle of ¹³⁷Cs method

Depth distribution of 137Cs method

Distribution of ¹³⁷Cs in soils

Source: Walling, 2004

Soil sampling for FRNs determination

Recording of site and sample information

Sampling approach The depth incremental sampling (Bq kg⁻¹) The bulk sampling (Bq m⁻²)

JAEA

Sample distribution Single transects Multiple transects Regular grid Irregular grid

Incremental depth sampling using the mechanical core sampler

Principle of ¹³⁷Cs method

Bulk core sampling for ¹³⁷Cs method

Depth incremental sampling (scraper plate)

Source: Li, 2004

In situ measurements of ¹³⁷Cs method using portable gamma detector

Sample preparation

Air drying, grinding and sieving Weighting and bulk density determination

Sample measurement

Laboratory measurement using HPGe gamma spectrometry. Low background shielding Use of appropriate software for data acquisition Quality assurance/ quality control Stability of detectors background Stability of detector efficiency and calibration Participation on inter-comparison exercises

FRNs determination

The deposited ¹³⁷Cs, ²¹⁰Pb, and ⁷Be can be measured using the Gamma-ray spectrometry

The FRN quantity can be expressed as concentration (Bq kg⁻¹) or as total inventory or total areal activity (Bq m⁻²)

Fig 2. Gamma spectrometer, Soil Science Unit, IAEA Laboratories, Seibersdorf

Measurements of ¹³⁷Cs

Principle of FRN conversion models:

- Models for non-cultivated land
- Models for cultivated land

Determination of soil erosion rates with aid of conversion models

Models for cultivated sites:

- Proportional model
- Simplified mass balance model
- Standard mass balance model
- Tillage mass balance model

Models for non-cultivated sites:

- Depth distribution model
- Incremental model

MODELS INCLUDED IN THE SOFTWARE

• Cs-137

Proportional model MBM1, MBM2, MBM3 Profile distribution model Diffusion and migration model

• Excess Pb-210

MBM2, MBM3

Profile distribution model

Diffusion and migration model

• Be-7

Profile distribution model

Conversion models (Walling et al., 2005)

Proportional Model

Y	- mean annual soil loss (t ha-1 y-1)
В	- soil bulk density (kg m ⁻³)
d ·	- plow depth (m)
Ar -	- reference ¹³⁷ Cs inventory (Bq m ⁻²)
Α	- ¹³⁷ Cs inventory of eroded point (Bq m ⁻²)
T	- time since the beginning of ¹³⁷ Cs fallout (y)
Ρ	- particle size parameter

Model hypothesis :

- ¹³⁷Cs fallout is completely mixed within the cultivation layer
- Soil loss is directly proportional to the amount of ¹³⁷Cs removed from the soil profile since the beginning of the fallout

Advantages :

Simple to use, needs only tillage depth and ¹³⁷Cs inventories

Limitations :

- Overestimates erosion if fallout is removed before being incorporated in the soil profile
- Underestimates erosion by not accounting for gradual dilution of ¹³⁷Cs concentration by incorporation of subsoil

Proportional model

- Y mean annual soil erosion rate (t ha-1 rok-1),
- **B** soil bulk density (kg m-3),
- *d* thickness of plowed horizon (m),
- Ar reference 137Cs inventory (Bq m-2),
- A 137Cs inventory of investigated point (Bq m-2),
- T 137Cs fallout time (year),
- **P** particle size factor for eroded point
- P' particle size factor for accumulated point

Mass Balance Model I

$$Y = \frac{10Bd}{P} \left[1 - \left(1 - \frac{Ar - A}{Ar}\right)^{\frac{1}{t - 1963}} \right]$$

Model hypothesis :

- ¹³⁷Cs fallout occurred entirely in 1963
- progressive reduction of ¹³⁷Cs in the soil of the plow layer due to loss by erosion and incorporation of subsoil

Advantages :

- easy to use, requires few parameters
- considers the gradual inclusion of ¹³⁷Cs poor soil material in the plow layer

Limitations :

- considers all fallout occurred in 1963
- does not consider potential removal of fresh fallout before incorporation in the soil
 - Y mean annual soil loss (t ha⁻¹ y⁻¹), B - soil bulk density (kg m⁻³),
 - d plow depth (m),
 - Ar reference ¹³⁷Cs inventory (Bq m⁻²),
 - A ¹³⁷Cs inventory of eroded point (Bq m⁻²),
 - t time of ¹³⁷Cs sampling (y),
 - P particle size parameter

Mass Balance Model II

Model hypothesis :

- ¹³⁷Cs fallout variable in time
- integrates fate of FRN deposition before incorporation in soil by cultivation
 Advantages :
- soil redistribution estimates more realistic than with MBm1

Limitations :

potential difficulty to establish the value of some parameters

$$y = \frac{(1 - \Gamma)I(t)d}{PA(t)} - \frac{\lambda d}{P} - \frac{dA(t)d}{A(t)dt}$$

- y mean annual soil loss (t ha⁻¹ rok⁻¹) Γ - proportion of deposited ¹³⁷Cs removed before ploughing l(t) - annual ¹³⁷Cs fallout (Bq m⁻² rok⁻¹) d - weight of lowed layer (kg m⁻²) P - particle size factor A(t)- total ¹³⁷Cs inventory in year t (Bq m⁻²)
- λ decay constant for ¹³⁷Cs (y)
- $t\,$ time since the beginning ^{137}Cs fallout (y)

Mass Balance Model 2 Parameters Required

- Local Reference Inventory
- Annual fallout input record
- Year of tillage commencement
- Proportion Factor
- Relaxation depth of Initial Distribution
- Tillage Depth
- Particle Size Correction

Profile Distribution Model

- Assumes current depth distribution established in 1963
- Assumes exponential depth distribution and uses the reduction in inventory to estimate the depth of soil loss and thus the mean annual rate of soil loss
- A relatively simple model to apply

Profile Distribution Model Parameters Required

- Local Reference Inventory
- Profile shape factor relaxation depth

Diffusion and Migration Model Parameters Required

- Local Reference Inventory
- Fallout input record (synthesised)
- Diffusion and migration parameters (calculated from Cs-137 depth distribution obtained for reference site)
- Relaxation depth of Initial Distribution

Software for FRN conversion models

World-wide application of the ¹³⁷Cs technique

Assessment of medium term rates and spatial distribution patterns of both erosion and sedimentation at the catchment scale. Harmonised application

through two CRPs.

Harmonising the ¹³⁷Cs technique

Assessment of medium term rates and spatial distribution patterns of both erosion and sedimentation at the catchment scale.

Harmonised world-wide application through two CRPs 137Cs estimated soil redistribution (t ha-1yr-1)

The ¹³⁷Cs technique

Assessment of medium term soil erosion and deposition rates as well as spatial distribution patterns at the catchment scale.

Harmonised worldwide application through two CRPs.

Measuring soil erosion and sedimentation

The ¹³⁷Cs technique provides medium term soil erosion and sedimentation rates as well as their spatial distribution patterns at the catchment scale. Harmonised world-wide application through two CRPs

Sediment dating

Radio-isotope content Chemical composition Magnetic properties Mixing models

Ionita and Margineanu, 2000

Soil redistribution inventorz at plot scale at Bohunice site, Slovakia

Emil Fulajtar

Results from Bohunice site

rogramme

Transect D					45	0
D 1	ECvS	1538	-49,12	-83,68	-56,07	-
D 2	ESS	1117	-63,05	-122,75	-90,19 oint	A()
D 3	ECcS	4801	58,82	110,33	75,38 uclear To	chiniq
D 4	VB	4310	42,57	79,86	54,56	
D 5	WCcS	3244	7,31	13,71	9,37	
D 6	WSS	3226	6,72	12,60	8,61	
D 7	WCvS	1936	-35,96	-55,36	-34,48	
D 8	MR	1910	-36,82	-57,03	-35,67	
D 9	ESTV	1409	-53,39	-94,42	-64,97	
D 10	TVB	3150	4,20	7,40	4,88	
D 11	WSTV	1733	-42,67	-69,01	-44,54	
D 12	WP	2630	-13,00	-17,37	-9,82	
Transect E						
E1	ECvS	1328	-56,07	-101,66	-71,19	
E 2	ESS	2967	-1,85	-2,34	-1,28	
E 3	ESS	1797	-40,56	-64,55	-41,18	
E 4	VB	2502	-17,23	-23,58	-13,53	
E 5	WSS	2641	-12,64	-16,85	-9,51	
E 7	ESTV	2744	-9,23	-12,09	-6,74	
E 8	TVB	3666	21,27	34,61	21,82	
E 9	WSTV	3059	1,19	1,94	1,22	
E 10	WP	3812	26,10	42,47	26,77	
Transect F			· · · · · ·			
F1	EP	2391	-20,91	-29,22	-17,01	
F2	ECvS	2593	-14,22	-19,14	-10,86	
F3	ESS	2292	-24,18	-34,47	-20,34	
F4	VB	4532	49,92	70,14	39,95	
F5**	WSS	2290	-24,10	-34,46	-20,20	
F6**	MR	1424	-52,96	-93,09	-63,86	
F7	ESTV	2117	-29,97	-44,31	-26,82	
F9	WSTV	2081	-31,16	-46,43	-28,26	
F10	WP	1931	-36,12	-55,68	-34,71	
Transect G	•		•	•		
G1	EP	2381	- 23,39	- 33,14	- 10,39	
G2	ECvS	2436	- 21,39	- 29,98	- 9,37	
G3	ESS	2281	- 27,04	- 39,08	- 12,33	
G4	ECcS	4036	36,95	52,93	20,14	
G5	VB	3608	21,32	30,54	11,62	
Transect K						
K1	EP	3117	3,11	4,91	3,02	
K2	ECvS	3020	-0,09	-0,12	-0,07	
K3	ESS	2259	-25,27	-36,27	-21,50	
K4	ECcS	2864	-5,26	-6,75	-3,72	
K5	VB	5304	75,45	106,96	61,31	
K 6	WCcS	2362	-21,87	-30,74	-17,96	
K 7	WSS	1580	-47,73	-80,38	-53,41	
K 8	WCvS	1597	-47.17	-79.06	-52.36	

Tab. 12. Jaslovské Bohunice - Erosion and deposition rate calculated by

selected calibration models

	Sample point	Position	¹³⁷ Cs activity (Bq.kg ⁻¹)	Soil erosion - y deposition (t.ha ⁻ ¹ .year ⁻¹)		
				Proportional model	Mass ballance model I	Mass ballance model II
ľ	Transect A					
Ι	A1	ESS	2455,7	- 20,67	- 28,88	- 9,01
I	A2	VB	4615,7	58,08	88,96	24,18
	A3	WCcS	3932,0	33,15	50,77	15,98
	A4	WSS	2038,8	- 35,89	- 54,59	- 17,56
	A5	WCvS	2069,9	- 34,75	- 52,50	- 16,84
Γ	A6	WP	2989,8	- 1,11	- 3,30	- 0,90
	Transect B					
	B1	VB	4490,7	53,52	70,32	22,75
Ι	B2	WSS	2898,0	- 4,56	- 5,88	- 1,80
	B3	WCvS	2762,4	- 9,50	- 12,55	- 3,85
I	B4	WP	2687,9	- 12,13	- 14,50	- 8,20
	Transect C					
l	C 1	ECvS	1078	-64,34	-127,06	-94,23
L	C 2	ESS	3910	29,34	59,26	42,21
	C 3	VB	4539	50,15	101,28	72,14
I	C 4	WCcS	4548	50,45	101,88	72,57
L	C 5	WSS	1783	-41,02	-65,51	-41,90
	C 6	WCvS	2526	-16,44	-22,40	-12,81
I	C 7	MP	2738	-9,43	-12,36	-6,90
L	C 8	ESTV	2182	-27,82	-40,57	-24,31
	C 9	TVB	2836	-6,19	-7,97	-4,41
	C 10	WSTV	3063	1,32	2,24	1,45
ſ	C 11	WP	2979	-1.46	-1.83	-1.00

Joint-24.250/1AEA Programme Nuclear Techniques in Food and Agriculture

Transect					
Н					
H1	EP	3031	0,26	0,38	0,22
H2	ECvPP	2945	-2,58	-3,27	-1,79
H3	ECvS	2440	-19,29	-26,70	-15,44
H4	ESS	2402	-20,54	-28,65	-16,65
H5	ECcS	3835	26,86	37,33	21,13
H6	VB	4000	32,32	44,92	25,42
H 8	WSS	2034	-32,72	-49,26	-30,20
H 9	WCvS	2707	-10,45	-13,78	-7,72
H 10	WP	2380	-21,27	-29,79	-17,37
Transect I					
I1	EP	2812	-6,98	-9,04	-5,00
I2	ECvPP	2823	-6,62	-8,55	-4,73
I3	ECvS	1481	-51,01	-88,31	-59,86
I4	ESS	1848	-38,87	-61,10	-38,63
I5	ESS	2853	-5,62	-7,23	-3,99
I6	ECcS	3380	11,81	19,09	11,95
I7	VB	3416	13,00	21,02	13,16
I8	VB	3954	30,80	49,80	31,17
I 9	WCcS	3817	26,27	42,47	26,58
I 10	WSS	2797	-7,48	-9,70	-5,38
I 11	WCvS	1995	-34,01	-51,65	-31,86
I 12	WP	2381	-21,24	-29,74	-17,34
Transect					
L					
L1	EP	2786	- 8,63	- 11,35	- 3,48
L2	ECvS	2310	- 25,99	- 37,34	- 11,76
L3	ESS	2011	- 36,91	- 56,58	- 18,22
L4	ECcS	3922	32,92	48,90	15,67
L5	VB	4852	66,71	98,95	30,88

Nuclear Techniques in Food and Agriculture

¹³⁷Cs depth distribution at depositional sink area

¹³⁷Cs spatial distribution

Spatial pattern of erosion/deposition processes (1:10 000), Jaslovské Bohunice, soil erosion rates (t ha⁻¹ y⁻¹) calculated by mass balance model

Results from Mochovce site

Total ¹³⁷Cs inventories and soil erosion/deposition rates calculated by conversion models

				5	Soil redistribution	n
Sample profile	Sample depth (cm)	Slope positio n	¹³⁷ Cs inventory (Bq.m ⁻²)	Proportion al model	Mass balance model I	Mass balance model II
					t.ha ⁻¹	
			Transect .	A		
A1	0 - 40	ridge	10326	3,3	5,1	3,0
A2	0 - 40	slope	11404	14,4	21,8	12,9
A3	0 - 40	slope	7747	-23,0	-32,7	-19,0
A4	0 - 35	slope	9801	-2,0	-2,6	-1,4
A5	0 - 35	slope	13810	39,0	55,2	31,1
A6	0 - 35	slope	14186	42,8	60,6	34,2
A7	0 - 40	slope	9844	-1,6	-2,0	-1,1
A8	0 - 40	slope	9486	-5,3	-6,8	-3,7
A9	0 - 40	valley	13734	38,2	53,0	29,6
A10	0 - 40	slope	13627	37,1	51,5	28,7
A11	0 - 35	slope	10590	6,0	8,4	4,7
A12	0 - 35	slope	7678	-23,8	-33,8	-19,7
A13	0 - 35	slope	11040	10,6	15,0	8,4
A14	0 - 35	ridge	10662	6,8	9,5	5,4
			Transect 1	В		
B1	0 - 40	ridge	9347	-6,7	-8,7	-4,7
B2	0 - 40	slope	11360	13,9	18,1	9,7
B3	0 - 40	slope	7448	-26,1	-37,7	-22,2
B4	0 - 40	slope	5883	-42,1	-67,7	-43,0
В5	0 - 40	slope	7793	-22,6	-32,0	-18,5
B6	0 - 50	valley	13249	33,2	50,3	29,7
B7	0 - 35	slope	5177	-49,3	-83,9	-55,6
B8	0 - 35	slope	9151	-8,7	-11,4	-6,3
B9	0 - 40	ridge	9369	-6,5	-8,4	-4,6

					Soil redistribution	ı	Nucle
Sample profile	Sample depth (cm)	Slope positio n	¹³⁷ Cs inventory (Bq.m ⁻²)	Proportion al model	Mass balance model I	Mass balance model II	
					t.ha ⁻¹		
			Transect	C			
C1	0 - 40	slope	5216	-48,9	-82,9	-54,8	
C2	0 - 35	slope	7339	-27,2	-39,6	-23,4	
С3	0 - 35	slope	8990	-10,3	-13,7	-7,6	
C4	0 - 35	slope	6519	-35,6	-54,7	-33,6	
C5	0 - 35	slope	11029	10,5	16,7	10,1	
C6	0 - 50	valley	10607	6,2	9,8	6,0	
C7	0 - 35	slope	5622	-44,8	-73,4	-47,4	
C8	0 - 35	slope	7796	-22,5	-31,9	-18,5	
С9	0 - 40	ridge	9913	-0,9	-1,1	-0,6	
			Transect	D			
D1	0 - 35	ridge	9770	-2,4	-3,0	-1,6	
D2	0 - 35	slope	10448	4,6	5,8	3,1	
D3	0 - 50	valley	8681	-13,5	-18,2	-10,1	
D4	0 - 40	slope	8226	-18,1	-25,0	-14,2	
D5	0 - 35	slope	7910	-21,4	-30,0	-17,3	
D6	0 - 40	slope	7993	-20,5	-28,7	-16,5	
			Transect	E			
E1	0 - 40	ridge	8853	-11,7	-15,6	-8,7	
E2	0 - 35	slope	8901	-11,2	-14,9	-8,3	
E3	0 - 35	slope	5556	-45,5	-74,9	-48,5	
E4	0 - 35	slope	9234	-7,8	-10,2	-5,6	1//
E5	0 - 35	slope	9140	-8,8	-11,6	-6,4	//
E6	0 - 50	valley	17571	77,4	117,0	69,4	
E7	0 - 35	slope	5126	-49,9	-85,1	-56,6	6.00
E8	0 - 35	slope	7728	-23,2	-33,0	-19,2	NOV
E9	0 - 40	ridge	6824	-32,5	-48,9	-29,6	AUT

¹³⁷Cs spatial distribution

JAEA Joint FAO/IAEA Programme Letter from proving for an Appendix

Spatial distribution of soil erosion and deposition at Mochovce site, Slovakia

The erosion rates at the steepest central parts of the slopes are between 17 and 63 t ha⁻¹ y⁻¹ with an average of 39 t ha⁻¹ y⁻¹ (Mass Balance Model II).

The deposition rates in the valley bottom range from 3 to 69 t ha⁻¹ y⁻¹ with an average of 32 t ha⁻¹ y⁻¹.

Water flow Conture lines

Soil loss (t.ha-1)

_	
	0 - 10
	10 - 20
12.5	20 - 30
	30 - 40
	40 - 50

50 - 60

60 - 70

Soil deposition (t.ha⁻¹)

Comparison of soil erosion rates obtained by ¹³⁷Cs method at Jaslovské Bohunice and Mochovce sites

Site and	Site coole	Process	Deriod	Slope	Slope	Vegetation	Mean erosion rate		Range of rates	Number of data
Authors	Site scale	FIOCESS	renou	length	inclination	vegetation	original units	t ha ⁻¹	t ha ⁻¹	
Jaslovské Bohunice Fulajtár (2003)	cca 40 ha	overall on-site soil redistribution	1954-1998	80 m	4-8°	ArL	26.1 t ha ⁻	26,1	11,4-54,4	70 points
Mochovce	cca 50 ha	overall off-site sediment transport	1954-1998	100 m	4-12°	F+ArL	39.0 t ha ⁻ 1	39,0	17,0-63,0	88 points

	-	-		-		-		-		-	
Site and Authors	Mathad	Plot size	Drogoss	Doriod	Slope	Slope	Vegetation	Mean eros	sion rate	Data range	Number
	Method	r lot size	FIOCESS	renou	length	n	vegetation	Original units	t ha ⁻¹	t ha ⁻¹	of data
Čečejovce Stašík et al (1983)	total collection	25x2 m (50m ²)	sheet and initial rill erosion	1981-82 (growing seasons)	25 m	6-7°	OR, WW	485 (g.m ⁻²)	4,85	2.9-6.8	2
Stakčín, Ubľa Chomaničová (1988)	total collection	10x5 (50m ²)	sheet and initial rill erosion	1986-88 (growing seasons)	10m	6-10°	WW, WR, SM, P	294 (g.m ⁻²)	2,94	0-8,7	8
Osikov, Kočín, Gbely, Smolinské, Rišňovce Fulajtár, Janský (2001)				1004.06		4-6°	SB, SF, GM, WW, ShB	925 (g.m ⁻²)	9,25	0-75	12
	total collection 20x2 m	sheet and initial rill erosion	(whole years)	(whole years)	(whole years)	20 m	8-10°	WW, ShB, WR, SB, GM, SF, AL, OR	1.384 (g.m ⁻²)	13,8	0-75
Lukáčovce, Turá Lúka Gajdová et al (1999)	tipping buckets	100x10 m (1000m ²)	sheet and mature rill erosion	1997-99 (whole years)	100 m	4-12°	WW, WR, SB, OR, GM	42.4 (kg.ha ⁻¹)	0,04	0-0.32	10

Soil erosion rates measured at experimental plots

NEW

Joint FAO/IAEA Programme Nuclear Techniques in Food and Agriculture

Compound Specific Stable Isotope Analyses (CSSI)

Joint FAO/IAEA Programme Nuclear Techniques in Food and Agriculture

¹³C in fatty acids of different ecosystems

Assessment of long term impact of soil erosion under the large scale mechanized agriculture using remote sensing

Data from individual transect sites

10 km

Eroded soils of Levice district (1:50 000) (vectorization of aerial photographs)

Levice

Explanation:

- Agricultural land
- Moderately eroded soils
- Strongly eroded soils
 - Forests
- Urban areas

Approximately 4 637 ha (31% of agricultural land) in loess hilly lands of Levice district are strongly eroded.
Achievements of the technical cooperation in Africa: Example of TC project in Uganda (UGA5037)

Methodological handbooks

Success stories: awareness rising articles on web site

Combatting Soil Erosion to Help Achieve Zero Hunger and Clean Water: IAEA Commemorates World Soil Day

Joanne Liou, IAEA Office of Public Information and Communication

Isotopes were used to determine soil erosion rates of experimental plots with no-tillage (front) and conventional tillage (back) land management in Zimbabwe. (Photo: E. Fulajtar/IAEA)

Over 45 billion tons of soil are lost to erosion every year. Farmers in several countries have succeeded in slowing down erosion with the help of nuclear techniques. Here are their stories from Zimbabwe, Argentina and Sri Lanka.

All over the world, the Earth's fine soil particles are losing ground to erosion. As 95 percent of food is cultivated in soil, the health and availability of Earth's living surface impacts the quality and quantity of the food we produce. "Agricultural landscapes lose valuable soil mainly through soil redistribution processes," said Emmanuel Chikwari, Head of the Chemistry and Soil Research Institute in Zimbabwe. "Once the soil resource is lost, it cannot be replaced for generations."

Related Stories

World Soil Day: How Can Nuclear Techniques Be the Solution to Soil Pollution and Increased Productivity?

How to Win a Fight Against Soil Erosion: Nuclear Science Helps Farmers in Morocco

Isotope Techniques Trace Erosion Source to Sri Lanka's Terraced Tea Plantations

Related Resources

- 🕑 World Soil Day 2019
- 9 Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture
- % Soil erosion control
- Guidelines for Using Fallout Radionuclides to Assess Erosion and Effectiveness of Soil Conservation Strategies
- Studying Erosion with the Help of Radionuclides

Nuclear Techniques in Food and Agriculture

Joint FAO/IAEA Programme

SERVICES ~

Press centre Employment Contact

fome / News / Nuclear Techniques Help Reveal High Rate of Soil Erosion in Benin

NEWS & EVENTS~

RESOURCES ~

Nuclear Techniques Help Reveal High Rate of Soil Erosion in Benin

ABOUT US ~

Emil Fulajtar, IAEA Department of Nuclear Sciences and Applications Joanne Liou, IAEA Office of Public Information and Communication

TOPICS ~

Soil erosion is a major problem for Benin's farmers. Nuclear techniques help scientists find its exact causes, so that they can tackle erosion. (Photo: E. Fulajtar/IAEA)

Harmless traces from nuclear testing more than half a century ago are helping researchers assess soil erosion rates. In Africa, about 65 percent of the continent's farm land is affected by erosion-induced losses of topsoil and soil nutrients, according to the Food and Agriculture Organization of the United Nations (FAO). Benin is among those countries severely impacted by soil erosion, which poses a major problem for economic development since agriculture represents approximately 35 percent of the country's GDP and 80 percent of its export income. A recent study applied a nuclear technique to assess rates of soil erosion and support land conservation in Benin.

"Evidence shows that over 90% of soils in Benin have a high level of degradation," said Pascal Houngnandan, Director of the Laboratory of Soil Microbiology and Microbial Ecology at the Faculty of Agricultural Sciences,

Related Stories

Search

Isotope Techniques Trace Erosion Source to Sri Lanka's Terraced Tea Plantations

Viet Nam Tackles Soil Erosion With Nuclear Techniques

Related Resources

- % Soil erosion control
- Guidelines for Using Fallout Radionuclides to Assess Erosion and Effectiveness of Soil Conservation Strategies
- % Food and agriculture
- Studying Erosion with the Help of Radionuclides
- 90 Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture

World Day to Combat Desertification: Using Nuclear Technology to Strengthen Soil and Water Conservation Strategies

JUN 17 2014

Soils are critical for all life-they act as a water filter and growing medium, supply nutrients for plant growth and contribute to biodiversity. Yet, despite the universal importance of healthy soil, we continue to lose approximately 5 to 7 million hectares each year through soil degradation - 24 billion tons of this non-renewable resource have been lost over the last century from the world's arable land. Today, land and soil degradation affect approximately 1.5 billion people, and not just in arid or dry environments.

June 17 is World Day to Combat Desertification, and this year's theme is 'Land Belongs to the Future - Let's Climate Proof'. The International Atomic Energy Agency (IAEA), through its technical cooperation programme and the Joint FAO/IAEA Division, is helping Member States to address this goal by

DEC 7 2015

More than 50% of the Earth's land is moderately or severely affected by soil degradation. Without sustainable practices, this trend will unfortunately continue, jeopardizing biodiversity, threatening global food prices, and endangering more than 2.6 billion small-scale farmers whose livelihoods depend on healthy soil. Although the challenge is great-both in size and complexity-the UN celebration of World Soil Day on 4 December reminds us that we have the tools to confront, and eventually resolve, the challenge.

Whereas it may take 1,000 years for a single centimetre of healthy soil to form, that same plot of land can be degraded or destroyed in moments. This is the central message of World Soil Day-arable land is fragile and limited, which means that our land-use must be respectful and sustainable. Through its technical cooperation (TC) programme, the IAEA works closely with its

Joint FAO/IAEA Prog Nuclear Techniques in Food and

Erosion in Moroccan Watersheds Can Be Reduced up to 60 Percent Through the Use of Isotopic Techniques

Nancy Hart, International Development Correspondent

OCT 11 2016

(Photo: Champa Dissanayake/Sri Lanka AEB)

The erosion that plagues Morocco's hillsides affects more than the agricultural fields that are losing soil. The eroding soil that sweeps down the hillsides eventually ends up as sediment in water reservoirs, leaving them with less water storage capacity. The Joint FAO/IAEA Division, working with Morocco's nuclear institution and other partners, adapted and introduced a package of isotopic techniques to identify the most erosion-prone areas. Having this information allowed for development and introduction of

Related Stories

Viet Nam Tackles Soil Erosion With Nuclear Techniques

Isotope Techniques Trace Erosion Source to Sri Lanka's Terraced Tea Plantations

Studying Erosion with the Help of Radionuclides

Related Resources

- 9 Joint FAO/IAEA Programme highlights
- % Food safety and quality
- % Land and water management
- % Improving soil fertility
- % Soil erosion control

World Soil Day: Madagascar Combats Soil Erosion with Tradition and Nuclear Science

Nicole Jawerth, IAEA Office of Public Information and Communication

An age-old agricultural method is helping to combat soil degradation and protect a source of food and income for more than 75% of the population in Madagascar. Through a study using isotopic techniques on the mountainous island, scientists working with the IAEA, in cooperation with the Food and Agriculture Organization of the United Nations (FAO), found that traditional terrace farming can reduce soil erosion and run-off in the country by up to

Related Stories

Going Climate-Smart: IAEA Marks World Food Day

F F

Protect the Land, Protect Our Future: IAEA Marks World Day to Combat Desertification

On solid ground: IAEA celebrates World Soil Day

Related Resources

- World Soil Day 2016 : 'Soils and pulses, a symbiosis for life'
- Studying Erosion with the Help of Radionuclides
- Joint FAO/IAEA Programme
- % Food and Agriculture

Nuclear Techniques in Food and Agriculture

Home/ News/ World Soil Day: Caring for the Planet Starts from the Ground and Nuclear Techniques can Help

World Soil Day: Caring for the Planet Starts from the Ground and Nuclear Techniques can Help

Nicole Jawerth, IAEA Office of Public Information and Communication

Related Stories

Viet Nam Tackles Soil Erosion With Nuclear Techniques

Erosion in Moroccan Watersheds Can Be Reduced up to 60 Percent Through the Use of Isotopic Techniques

Studying Erosion with the Help of Radionuclides

Related Resources

- World Soil Day 2017
- % Soil Erosion Control
- Goint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture

Erosion threatens soil resources worldwide. Nuclear science offers ways to study and protect this finite, non-renewable resource. (Photo: M. Benmansour/CNESTEN)

Have you ever thought about soil? Thought about this vast limited resource where your food grows? This finite, non-renewable resource is under threat worldwide. Intensive agricultural practices, pollution and climate change threaten its health and the life-sustaining support it offers people and the planet.

But soil has an ally: nuclear science.

How to Win a Fight Against Soil Erosion: Nuclear Science Helps Farmers in Morocco

Nicole Jawerth, IAEA Office of Public Information and Communication

FEB 26 2018

Farmer El Haj Abdeslam's son drives a tractor to help with the farm work while scientists take soil samples from the fields. (Photo: R. Moussadek/INRA)

Farmer El Haj Abdeslam and his three helpers spent years fighting soil erosion that swept away their crops' fertile ground, taking their incomes with it. Now Abdeslam and many Moroccan farmers like him are saving their soil and their source of food and money using soil-conservation methods selected with the help of nuclear science.

Related Stories

lsotope Techniques Trace Erosion Source to Sri Lanka's Terraced Tea Plantations

Viet Nam Tackles Soil Erosion With Nuclear Techniques

Erosion in Moroccan Watersheds Can Be Reduced up to 60 Percent Through the Use of Isotopic Techniques

World Soil Day: Caring for the Planet Starts from the Ground and Nuclear Techniques can Help

Related Resources

- Studying Erosion with the Help of Radionuclides
- % Soil Erosion Control
- % Land and water management

reerear reeningese in rees and righteatrare

ATOMS FOR PEACE AND DEVELOPMENT

How to win the fight against soil erosion: saving fertile land and preserving water quality with the help of nuclear techniques

By Nicole Jawerth and Miklos Gaspar

Erosion eats away at fertile land, threatening food production and farmers' income alike. The brown of the soil, which is the first to go, is the most nutritious. Often this nutritious soil ends up in rivers and lakes where it encourages algae to grow, causing the amount of oxygen in the water to decrease. This in turn compromises water quality and harms fish populations.

Nuclear techniques can help scientists and farmers find erosion hot spots and identify the right soil conservation technique to save both farmland and freah water sources (see The Science box on page 17). The IAEA, in cooperation with the Food and Agriculture Organization of the United Nations (FAO), provides support to 70 countries on erosion research. This article profiles two of them: Morocco, where the focus is on saving agricultural land, and Myanmar, where they are fighting off an algae boom in the country's second largest lake.

Saving farmland in Morocco

soil samples from the fields. (hous it Moustack/060) Farmer El Haj Abdeslam and his three balance sent vary. Subting roll accesso

helpers spent years fighting soil erosion that swept away their crops' fertile ground, taking their incomes with it. "Year after year, soil erosion was making

The artistry year, soil ecosion was making the quality of my land worse and that made my farm less productive," said Abdeslam, whose 5-hectare chickpea and cereal farm feeda his farmly of seven and is his sole source of income. "Since the scientists helped me conserve my soil, my farm has been producing 20 to 30% more with less input, and my income has gone up."

14 | IAEA Bulletin, March 2018

Farmer El Haj Abdeslam's son drives a tractor to help with the farm work while scientists take

> The scientistu used fallout radionuclides and compound-specific stable isotope techniques (see The Science box on page 17) to pinpoint erosion-prone areas and evaluate the effectiveness of various conservation methods. The technique was introduced in response to Morocco's more than 100 million tonnes of soil losses each year.

> "Once we knew where the erosion hotspots were, we tested several soil-conservation methods using nuclear techniques to see how we could improve the situation. We adapted and combined different conservation methods

JAEA Joint FAO/IAEA Programme Nuclear Techniques in Food and Agriculture

Egypt and Senegal Receive Gamma Detectors to Help Combat Soil Erosion

Matt Fisher, IAEA Office of Public Information and Communication

A portable gamma detector provided to the National Centre of Energy, Sciences and Nuclear Techniques in Morocco (CNESTEN). (Photo: CNESTEN)

Experts in Egypt and Senegal will be better able to fight soil erosion thanks to two gamma spectroscopy detectors which have just been delivered through the IAEA's technical cooperation programme. The detectors will be used for soil erosion assessment in areas that have experienced severe land degradation, a phenomenon that jeopardizes agriculture in many regions of the world, including in arid and semi-arid lands in Africa.

Related Stories

How to Win a Fight Against Soil Erosion: Nuclear Science Helps Farmers in Morocco

World Soil Day: Caring for the Planet Starts from the Ground and Nuclear Techniques can Help

Viet Nam Tackles Soil Erosion With Nuclear Techniques

Related Resources

- Studying Erosion with the Help of Radionuclides
- % Soil Erosion Control
- % Land and water management
- Guidelines for Using Fallout Radionuclides to Assess Erosion and Effectiveness of Soil Conservation Strategies
- Impact of Soil Conservation Measures on Erosion Control and Soil Quality

Nuclear Techniques in Food and Agriculture

IAEA Updates: News

INTERNATIONAL ATOMIC ENERGY ACTIVE flagship publication of the IAEA | November

cience & Technol

er cells than ever before: a new

tomic balancing act to vity and protect the 1

hat atoms in t ocean

. 4

"The tool is intended to be a living book that can be constantly updated and extended as this field evolves to include different laboratory protocols and research areas," Barradas said. The launch of the first revision is planned for early 2019. — By Luciana Viogas

Egypt and Senegal receive gamma detectors to help combat soil erosion

and 17% of Senegal's GDP. Low-input

farming from subsistence farms run

by families represents a significant

component of this sector. It accounts

for a high proportion of jobs, and

provides livelihoods to subsistence

of farming typically takes place on

and mountains, it is particularly

The IAEA, in cooperation with the

Food and Agriculture Organization of

the United Nations (FAO), has been

assisting countries for more than 20

years in combating land degradation

by supporting the use of isotopic

techniques to assess soil erosion.

Fallout radionuclide tracers, such as

extensively in assessing soil erosion

caesium-137 (Cs-137), have been used

and sedimentation. This radionuclide is

present in the atmosphere from where

and accumulates in the uppermost soil

laver. During erosion, the topsoil is

washed away, which can be measured

as decreased levels of Cs-137. At the

increased levels of Cs-137 are seen.

has many advantages compared to

The erosion assessment using Cs-137

same time, where the eroded soil settles,

it falls to the ground in precipitation

susceptible to soil erosion.

farmers and their families. As this type

arid and semi-arid land with marginal

agricultural potential, such as drylands

Experts in Egypt and Senegal will be better able to fight soil erosion thanks to two gamma spectroscopy detectors which were delivered in November 2018 through the IAEA's technical cooperation programme. The detectors will be used for soil erosion assessment in areas that have experienced severe land degradation, a phenomenon that jeopardizes agriculture in many regions of the world, including in arid and semi-arite.

Egypt and Senegal are both suffering from severe land degradation, with soil productivity in most of the northeast Nile Delta in Egypt, for instance, having decreased by more than 45% in the last 35 years, according to recent studies. Land degradation is the result of several factors, including overexploitation of land, unsustainable agricultural practices and extreme weather events, which have occurred more frequently in the last few decades. Soil erosion - a major type of land degradation caused by both can lead to the complete loss of the fertile topsoil, leaving the affected land unfit for agriculture.

Agriculture is an important economic sector in most African countries, accounting for approximately 12% of Egypt's gross domestic product (GDP) traditional methods, said Emil Fulaitar, a soil scientist in the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture. This method provides long-term mean erosion rates. while conventional methods provide mostly short-term data. Using this nuclear technique, there is therefore no need for long and resourcedemanding monitoring programmes: soil redistribution can be assessed in a single sampling campaign. It also helps to determine the spatial distribution of erosion, which is essential input for soil conservation programmes aimed at sustainable land management and thereby food security.

The provision of gamma spectrometers, which are used to carry out the Cs-137 measurements, is part of an ongoing initiative by the Joint FAO/IAEA Division to help African countries enhance their capacity to control soil erosion; this also includes the training of scientists on the use of the Cs-137 method and the establishment of gamma spectroscopy capacities across the continent. Another three table-top gamma detectors - for Madagascar, Algeria and Zimbabwe --- and three portable gamma detectors - for Morocco, Tunisia and Madagascar have already been delivered.

"We will use the gamma detectors for the 'fingerprinting' of addimentation in the Nile River to trace the origin of contamination from different sources, such as drainage from industrial and agricultural bodies located on the riverback," said Mohamed Kassab, a lecturer at the Egyptian Atomic Energy Authority's Nuclear Research Centres in Africa to build capacity in gamma measurements and analytical services."

- By Matt Fisher

IAEA Bulletin, November 2018 | 31

JOINT FAU/IAEA Programme Nuclear Techniques in Food and Agriculture

Success stories: awareness rising articles in IAEA fact sheets

Reducing soil erosion in Morocco

million hectares of Moroccan agricultural lands are affected by water erosion¹. On average soil erosion ranges from 5 to 20 t/ha/year, but exceeds these magnitudes in northern and north-western agricultural basins. For example, in the pre-Rif hills, soil erosion is exceeding 50 t/ha/year11

with a yearly soil loss of around 100 million tons³². This annual soil loss leads to a reduction of 75 million m³ of downstream dam water storage capacity. Each year about 0.5% of the country's reservoir storage capacity is lost. This water loss is equivalent to an annual water volume permitting the irrigation of 10,000 ha of arable lands²

downstream water quality and quantity.

Through IAEA Technical Cooperation and research projects and with the technical support of the Joint FAO/JAEA Division of Nuclear Techniques in Food and Agriculture, the Centre National de L'Energie, des Sciences et des Techniques Nucléaires (CNESTEN) in partnership with the Institut National de Recherche Agronomique (INRA), Ecole Nationale Forestière d'Ingénieur (ENFI), the Centre de Recherche Forestière (CRF) and the Institut Agronomique et Vétérinaire Hassan II (IAV) quantified soil erosion rates and assessed the effectiveness of no tillage soil conservation practices. Under no tillage management soil loss was reduced from 14 to 10 t/ha/year in the south east of Rabat (Marchouch site) and from 38 to 23 t/ha/year in the Tetouan region³.

In addition, using a combination of fallout radionuclides (FRNs) and compound-specific stable isotope (CSSI) techniques (see below), the CNESTEN estimated soil loss of 23 t/ha/year in the Moulay Bouchta watershed and identified that around 90% of the sediment in the downstream Talembout water reservoir originated from the surrounding agricultural areas indicating the effectiveness of forest plantations in protecting soil resources against erosion. Sedimentation rates were established for the downstream reservoir at 60 t/ha/year⁴.

Fallout radionuclides (FRNs) such as anthropogenic caesium-137 (137Cs), geogenic lead-210 (210Pb), and cosmogenic beryllium-7 (7Be), are strongly bound to fine soils particles. Therefore, these radioisotopes are very conservative soil tracers, which can assist in establishing soil erosion and sedimentation rates and evaluating the efficiency of soil conservation measures to control soil erosion and associated excess of sedimentation.

Compound-specific stable isotope (CSSI) techniques are based on the measurement of carbon-13 (13C) natural abundance signatures of specific organic compounds (natural fatty acid biomarkers) in the soil. By linking fingerprints

MADAGASCAR Return to traditional terracing improves farm production in Madagascar

In Madagascar, where farming has moved toward modern intensive agricultural practices in recent decades, a study has demonstrated that the country's farmers would be much better off if they returned to the traditional terrace farming of their ancestors. Using isotopic techniques to study erosion patterns of the island country's mountainous regions, where more than 30 percent of the agricultural area is already degraded, the Joint FAO/IAEA Division found that terracing systems could reduce soil erosion by 40 percent.

Astronauts once reported that Madagascar looked as if it were bleeding to death, Today, looking at a satellite view of the country makes it easy to see what they meant. The image shows reddish rivers and reservoirs – not filled with blood but with the country's red ferralitic soil that is eroding down the island's steep slopes, leaving agricultural land barren and adding sediment and its polluting nutrients of nitrogen, phosphorus and potassium to water systems,

Due to deforestation and improper farming practices, Madagascar, one of the world's poorest countries, loses more topsoil per hectare each year than just about any other country in the world. The soil itself is not particularly fertile and now it has to deal also with the impacts of climate change, such as drought, floods and unpredictable rainfall that further break down the soil structure and makes it more likely to erode.

In order to help Madagascar's farmers with conservation practices, scientists at the Institut National des Sciences et Techniques Nucléaires (INSTN-Madagascar) in the capital, Antananarivo, worked with Joint FAO/IAEA Division experts to address the problem and identify the country's most erosion-prone areas. The Joint FAO/ IAEA Division assists countries in quantifying soil erosion rates and assessing the effectiveness of their soil conservation practices. In the case of Madagascar,

Presentations on meetings and conferences

Side Event at COP12 of the UN Convention to Combat Desertification (TC and Joint FAO/IAEA Division)

https://www.iaea.org/sites/default/files/documents/tc/COP_12_Flyer_.pdf

On the occasion of the 12th session of the UNCCD, COP12, the International Atomic Energy Agency invites you to attend a special side event

Soil Science for Sustainable Land Management

Monday 19 October 2015 18:00-20:00, MECLIS room

Celebrating 2015 International Year of Soils

Organisation of a special IAEA event at the 12th session of the Conference of the Parties (COP) to the UN Convention to Combat Desertification (UNCCD) *Ankara, Turkey, 19 October 2015*

IAEA emphasizes link between nuclear techniques and soil sustainability at COP12 side event

OCT 14 2015

For the world's 2.6 billion small-scale and subsistence farmers, healthy soils can be the difference between stability and poverty, a full plate and an empty stomach, life and death. But despite the universal value of healthy soils, human economic activity continues to cause land erosion and soil degradation, placing approximately 5 to 7 million hectares in danger each year. Against this backdrop of threatened soils, and as climate change further complicates the challenge, the IAEA has organized a side-event to highlight the benefits of soil science for sustainable land management, to be held on the margins of the 12th session of the UNCCD Conference of the Parties

Linkage of UNCCD and RAF 5063

Joint FAO/IAEA Programme Nuclear Techniques in Food and Agriculture

M. Benmansour 1, L. Mabit 2, R. Moussadek 8, M. Yassin 4, A. Nouira 1, A. Zouagui 1, R. Mrabet ⁸, H. laaich ⁸, S. Hajib ⁴

(1) Gentre Hatonica de l'Encegie, cas Scaturas et das Techniques Nucleares (DNETERI), Reate Monococo (2) LAEA JURI FONDER O'RIBOS) do nel Vater Menezement en de OSTMOROL Lassrame, Debensont Audore, (2) Institut National de la Recherche Agnonomise (INRA), Reade, (Monococo (2) Institut National de la Recherche Agnonomise (INRA), Reade (Monococo (2) Centre National de la Recherche Recherche Agnonomise (INRA), Reade (Monococo (2) Centre National de la Recherche Recherche Agnonomise (INRA), Reade (Monococo (2) Centre National de la Recherche Recherche Agnonomise (INRA), Reade (Monococo (2) Centre National de la Recherche Recherche Agnonomise (INRA), Reade (Monococo (2) Centre National de la Recherche Recherche Recherche Agnonomise (INRA), Reade (Monococo (2) Centre National de la Recherche Recherche Recherche Agnonomise (INRA), Reade (Monococo (2) Centre National de la Recherche Reche Recherche Recherche Recherche Recherche Recherche Recherche

INTRODUCTION

For Morocco, reducing soil erosion and land degradation is a national priority for improving soil quality and protecting downstream water quality and quantity

Reliable datasets on the magnitude of erosion and the effectiveness of soil conservation practices are required for decision makers

The aim of this work is to illustrate the role of fallout radionuclides (i.e. 137Cs and 7Be) for supporting soil conservation strategies through case studies in three Moroccan sites: Marchouch, Harchane (Fig.1) and Oued Mellah (Fig.2) located in Rabat (1), Tetouan (2) and Chaouia-Ouardigha (3) regions respectively (Fig.3)

hg.2: Helds of Qued Mellah Wetershed (soil conservation process - Angles and consel with fruit plantations)

MATERIAL AND METHODS

In the Rabat and Tétouan regions, with semi-arid and Mediterranean climates respectively, the no-till technique was tested as soil conservation practice and compared to conventional tillage □ In the Chaouia-Ouardigha region (semi-arid climate) the efficiency of conservation practices based on Atriplex plantations and cereal & fruit plantations was assessed within the framework of the management of "Oued Mellah" watershed

<u>Methods used</u>: (i) Fallout ¹³⁷Cs for retrospective assessment of long term [50-80 yr] soil redistribution rates and (ii) fallout ⁷Be [halflife of 53 days] for documenting short term soil erosion

C Reference sites were investigated near the study areas. In the agricultural studied fields, the soil sampling strategy was based on a transect approach

¹³⁷Cs and ⁷Be were measured by gamma spectrometry using a 'p type" high purity germanium (HPGe) detector with high resolution and 30% efficiency

□ Estimates of erosion/deposition rates from ¹³⁷Cs and ⁷Be data set have been produced using conversion models (i.e. Mass Balance Model II and the Profile Diffusion Model)

RESULTS AND DISCUSSIONS

Long term soil erosion rates of the three regions evaluated by the 137Cs method, ranged from 8 to 58 t ha-1 yr-1

The net soil erosion rates appeared to be related to the rainfall, slope and the past land use (Tab.1)

The 'Be results indicated that soil loss has been reduced significantly under no-till as compared to conventional tillage in Rabat and Tétouan regions. Indeed, soil erosion rates were lowered by 50% for the Marchouch site (Fig.4) and by 40% for the Harchane site (Fig.4)

G For the Oued Mellah watershed, the results highlighted that high density Atriplex plantations have reduced soil loss by approximately 57 to 80% compared to Atriplex plantations with low density while for the site under fruit plantations and cereals, soil erosion has been decreased by 58% compared to bare soils (Fig.5)

Regime	No	Mean mend related (see)	Alay r	Pare land a w	Ner all Pariso reco
Kolar	Merch much Mill	101	17%	Concentional + Dage	100
line and	Harbary HI	610	10%	Concernional + Dage with controls legences	19.1
	Heartener HC	640	10%	Concentional + Dage	10.4
	Reflected NCI	140	10%	with controls legeners. For my	6.8
Chard p.	Reflected NC	540	2014	Termination and the second sec	1.1
"Deed	Bellumes BCI	240	26	for and	
Numer'	Ref. Kurdelar (D).1	540	17%	Crish	2.4

Tab.1: Long-term and erosion refers using $^{\rm CD}{\rm Ce}$ associated with different ${\rm c}$

CONCLUSIONS

□ This Moroccan study demonstrated the potential of the ¹³⁷Cs and 7Be techniques to estimate long- and short-term soil erosion rates and to assess the effectiveness of soil conservation strategies

Isotopic techniques are increasingly applied in agricultural fields and watersheds in Morocco for providing useful and reliable information to decision makers

Joint FAO/IAEA Programme

Nuclear Techniques in Food and Agriculture

<u>ACKNOWLEDGEMENTS</u>: The authors acknowledge the international Atomic Energy Agency (IAEA) through RAF5063/RAF5075 for funding this study

Atoms for Food and Agriculture: Meeting the Challenge

(MBM 2) was used to derive soil redistribution rates

□ A full sediment budget has then been produced for the plots investigated

This study highlights that soil erosion can be significantly reduced by using proper soil conservation strategy

Terraced agriculture protects soil from erosion: Case studies in Madagascar

N. Rabesiranana (1), M. Rasolonirina (1), A.F. Solonjara (1), H.N. Ravoson (1), L. Mabit (2) 10 Institut National des Sciences et Techniques Nucléaires (INSTN-Madagascar), Antananarivo, Madagascar (Instn@moov.mg) 1/ IAEA Joint FAC/IAEA Division, Soli and Water Management and Crop Nutrition Laboratory, Selbersdorf, Austria (L. Nabito)leea.org)

OBJECTIVES

RESULTS AND DISCUSSIONS

- INVENTORY
- <u>Reference site</u>: ¹³⁷Cs and ²¹⁰Pb_{ex} inventories are 216 Bq.m⁻² ± 20% (Mean ± Coefficient of Variation) and 3078 Bg.m² ± 13%, respectively
- > Sloped field: 137Cs and 210Pbex inventories vary from 110 Bq.m⁻² to 280 Bq.m⁻² and from 2026 Bq.m⁻² to 4110 Bq.m⁻², respectively
- <u>Terraced field</u>: ¹³⁷Cs and ²¹⁰Pb_{ax} inventories vary from 145 Bq.m² to 280 Bq.m² and from 2141 Bq.m² to 4253 Bq.m², respectively
- RH

Coil radiatribution	Sloped field		Terraced field	
Son redistribution	137Cs	210 Pb ex	137Cs	210Pbex
Mean erosion (t.ha ⁻¹ .yr ⁻¹)	9.1	7.9	7.7	8.5
Gross erosion (t.ha-1.yr-1)	8.2	7.2	5.5	6.2
Net erosion (t.ha ⁻¹ .yr ⁻¹)	7.4	5.9	3.4	3.8
Sediment delivery ratio (%)	89	82	61	61
Eroding area (%)	91	91	72	72

SOIL EROSION RATES

- > For the sloped field using the 137Cs and 210Pbes methods net soil erosion rates are 7.4 t.ha⁻¹.yr⁻¹ and 5.9 t.ha⁻¹.yr⁻¹, respectively
- > For the terraced field, net soil erosion rates are 3.4 t.ha⁻¹.vr⁻¹ and 3.8 t.ha-1.yr-1, respectively

CONCLUSIONS

- > Timeframe discrimination shows that erosion phenomenon has increased in the last 50 years (from 137Cs data) compared to the last 100 years (from 210Pbex data)
- > However, results highlight that terraced agricultural practice reduces soil erosion magnitude and therefore, provides an efficient solution to protect soil resources of the Malagasy highlands

Joint FAO/IAEA Programme

luclear Techniques in Food and Agriculture

Nuclear Techniques in Food and Agriculture

Atoms for Food and Agriculture: Meeting the Challenge

- > To produce Malagasy data on soil erosion/sedimentation rates under various agricultural practices
- > To assess soil conservation efficiency of traditional agricultural practice

STUDY SITE AND METHODS

STUDY SITE

- > Two adjacent cultivated fields (i.e. sloped field & terraced field), located 40 km east of Antananarivo, in Madagascar highlands
- > One reference site selected close to the 2 study sites

- Sloped field

SAMPLING AND LABORATORY WORK

- > Motorized soil corer was used for soil sampling
- Soil samples collected (n = 50)

Reference site: 18 bulk + 1 profile Sloped field: 11 bulk + 1 profile Terraced field: 18 bulk + 1 profile

- > 137Cs and 210Pbex activities were measured simultaneously by gamma spectrometry system with high resolution, low background N-type HPGe detector
- > Soil redistribution rates determined by Mass Balance Models (MBMs)

()IAEA Joint FAO/LAEA Programme

Managing agricultural water and land degradation

IAEA Scientific Forum Nuclear Technology for Climate

Mitigation, Monitoring, Adaptation

18–19 September 2018

Emmanuel Chikwari

Chemistry and Soil Research Institute Department of Research & Specialist Services Ministry of Lands, Agriculture and Rural Resettlement Zimbabwe

JOINT FAULIAEA Programme

L'INSTITUT NATIONAL DE RECHERCHE FORESTIERE LE CENTRE DE RECHERCHE NUCLEAIRE D'ALGER L'INSTITUT NATIONAL DES SOLS DE L'IRRIGATION ET DU DRAINAGE

ORGANISENT DANS LE CADRE DU PROJET RAF5075

UNE JOURNEE NATIONALE SUR: LA PROMOTION DE L'UTILISATION DES TECHNIQUES NUCLEAIRES ET RADIOTRACEURS EN AGRICULTURE

of global change

Papers in scientific journals

Journal of Experimental Biology and Agricultural Sciences, August - 2017; Volume - 5(4)

Journal of Experimental Biology and Agricultural Sciences

http://www.jebas.org

ISSN No. 2320 - 8694

EFFECT OF TILLAGE AND MULCHING ON SOIL WATER EROSION IN LINSINLIN WATERSHED, CENTRE OF BENIN

AKPLO Tobi Moriaque¹, KOUELO ALLADASSI Félix^{1*}, HOUNGNANDAN Pascal¹, BENMANSOUR Moncef², RABESIRANANA Naivo³, MABIT Lionel⁴, AHOGLE AGASSIN Martinien Arcadius¹, ALOHOUTADE Finagnon Mathieu¹

¹Laboratory of Soil Microbiology and Microbial Ecology, Faculty of Agronomic Sciences, University of Abomey-Calavi, 01 BP 526 Cotonou (BENIN)
²Centre National des Energies, Sciences et Techniques Nucléaires (CNESTEN), Rabat, Maroc
³Institut National des Sciences et Techniques Nucléaires (INSTN), Antananarivo, Madagascar
⁴SWMCNS, Joint FAO/IAEA, Division of Nuclear Techniques in Food and Agriculture, Vienna-Seibersdorf

Received – June 15, 2017; Revision – August 19, 2017; Accepted – September 09, 2017 Available Online – September 10, 2017

DOI: http://dx.doi.org/10.18006/2017.5(4).515.524

KEYWORDS	ABSTRACT	
Isohypse tillage	Soils degradation in Benin is most commonly reported thread for the agricultural production and this	
Mulching	situation became more crucial in the Centre of Benin. This study has been carried out to evaluate the	
	contribution of farmer's soil conservation practices to combat soil erosion in the agricultural watershed	10 Y 3
water erosion	of Linsinlin. A field experiment was conducted on loamy-sand soil using Fisher Block design under	47 68
	researcher management. The factors which testified during study were tillage and mulching. The	
Watershed	"Runoff plot" system was installed to collect erosion data. Three rainfall episodes viz, June 15, 19 and	
	27, 2016 with 52, 27 and 57 mm of water were used for the data collection. Rain distribution was	Joint FAO/IA
Djidja	manural for each coince animals using a coin gauge. These three coince animals constitute a constituen	Nuclear Techniques i

JAEA

Journal of Experimental Biology and Agricultural Sciences

http://www.jebas.org

ISSN No. 2320 - 8694

ASSESSMENT OF THE LEVEL OF SOIL DEGRADATION IN THREE WATERSHEDS AFFECTED BY INTENSIVE FARMING PRACTICES IN BENIN

KOUELO ALLADASSI Félix^{1*}, HOUNGNANDAN Pascal¹, AZONTONDE Hessou Anastase², BENMANSOUR Moncef³, RABESIRANANA Naivo⁴ and MABIT Lionel⁵

¹Laboratoire de Microbiologie des Sols et d'Ecologie Microbienne, Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, 01 BP 526 R. P. Cotonou ²Laboratoire Sciences de Sol, Eau et Environnement, Institut National de Recherches Agricoles du Bénin (LSSEE/INRAB) ³Centre National de l'Energie, des Sciences et des Techniques Nucléaires (CNESTEN), Rabat, Maroc ⁴Institut National des Sciences et Technologies Nucléaires (INSTN), Antananarivo, Madagascar ⁵SWMCNS, Joint FAO/IAEA, Division of Nuclear Techniques in Food and Agriculture, Vienna - Seibersdorf.

Received - October 05, 2015; Revision - November 04, 2015; Accepted - December 10, 2015 Available Online - December 15, 2015

DOI: http://dx.doi.org/10.18006/2015.3(6).529.540

KEYWORDS	ABSTRACT
Watershed	Soil degradation is a serious problem for people living in watersheds of Benin. This degradation is
Soil degradation	mainly due to poor farming practices and because of this poor management annual maize production reduced critically. This study was aimed to estimate the state of physical and chemical soil degradation
Soil properties	of three watersheds of southern Benin. One reference site representing sacred forest was also chosen for comparing the results of watershed. Soil cores were also collected from these selected sites. Physical
Soil evaluation	and chemical parameters were determined from the collected soil samples. Results of study revealed that the watershed soil is more compact and lower in nutrients than the soil of reference sites. The bulk soil
Benin	density was significantly higher in Govié and Lokogba watersheds compared to their reference site. As a result of intensive farming and water erosion, root biomass of the soil has significantly decreased from 86 to 82% in Govié, 69 to 67% in Lokogba and 75 to 70% in Linsinlin. The total soil nitrogen of watershed declined significantly, from 33 to 24% in Govié, 32 to 30% in Lokogba and 38 to 25% in Linsinlin. Available soil phosphorus decreased from 10.93 ppm to 7.11 ppm in the Lokogba watershed. The soil phosphorus of Linsinlin watershed was reported highest from 5.5 ppm to 8.00 ppm compared to the reference site. The soil organic matter of watershed declined from 38 to 37% in Govié and 68 to 66% in Lokogba watershed, watershed was reported highest from 38 to 37% in Govié and 68 to 66% in Lokogba watershed.
	00% in Lokogoa. Lokogoa watersned is the most degraded one compared to three watersneds studied.

* Corresponding author

E-mail: felix.kouelo@gmail.com (KOUELO ALLADASSI Félix)

Peer review under responsibility of Journal of Experimental Biology and Agricultural Sciences.

All the article published by Journal of Experimental Biology and Agricultural Sciences is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License Based on a work at www.jebas.org.

Journal of Environmental Radioactivity 152 (2016) 112–118 Contents lists available at ScienceDirect

Journal of Environmental Radioactivity

journal homepage: www.elsevier.com/locate/jenvrad

Assessment of soil redistribution rates by ¹³⁷Cs and ²¹⁰Pb_{ex} in a typical Malagasy agricultural field

N. Rabesiranana ^{a, *}, M. Rasolonirina ^a, A.F. Solonjara ^a, H.N. Ravoson ^a, Raoelina Andriambololona ^a, L. Mabit ^b

^a Institut National des Sciences et l'echniques Nucléaires (INSTN - Madagascar), BP 4279, Antananarivo, 101, Madagascar ^b Soil and Water Management & Crop Nutrition Laboratory, Joint FAQ/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria

ARTICLE INFO

ABSTRACT

Article history: Received 14 June 2015 Received in revised form 22 October 2015 Accepted 13 November 2015 Available online 12 December 2015

Keywords: Soil Erosion Ceasium-137 Pb-210 Madagascar Soil degradation processes affect more than one-third of the Malagasy territory and are considered as the major environmental threat impacting the natural resources of the island. This innovative study reports about a pioneer test and use of radio-isotopic techniques (i.e. Cs-137 and Pb-210ex) under Madagascar agroclimatic condition to evaluate soil erosion magnitude. This preliminary investigation has been conducted in a small agricultural field situated in the eastern central highland of Madagascar, 40 km East from Antananrivo. Both anthropogenic Cs-137 and geogenic Pb-210 soil tracers provided similar results highlighting soil erosion rates reaching locally 18 t ha⁻¹ yr⁻¹. a level almost two times higher than the sustainable soil loss rate under Madagascar agroclimatic condition. The sediment delivery ratio established with both radiotracers was above 80% indicating that most of the mobilized sediment exits the field.

Assessing soil erosion rate through fallout radionuclides in Madagascar is a first step towards an efficient land and water resource management policy to optimise the effectiveness of future agricultural soil conservation practices.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Soil degradation induced by human activity is a major concern in Madagascar. Its severity is very high for 21.9 percent of the area (130 081 km²), high for 48.2 percent (286 007 km²), moderate for 24.5 percent (145 153 km²) and low for only 4.6 percent (27 094 km²) (FAO, 2004). To summarise, more than 30% of the island's total soil area, covering 184 338 km², is degraded.

Soil erosion, the most common form of soil degradation, is present in all its aspects: rill and sheet erosions, landslides, gully erosion and its most emblematic form, the "lavaka".

Soil erosion and sedimentation cause not only on-site degradation of non-renewable natural resources, but also off-site problems such as downstream sediment deposition in agricultural fields, floodplains and water streams. These impacting problems on soil fertility and crop productivity in agricultural land, on water well documented (e.g. Pimentel, 2006; UNEP, 1992; Walling, 2000). Due to their impact on the sustainability of agricultural production, there is a clear need to acquire quantitative data on the extent, magnitude and actual rates of erosion/sedimentation as well as on their economic and environmental consequences.

From the mid-1950s, research activities on soil erosion and soil protection have been conducted intensively in Madagascar, resulting in more than 4200 scientific articles and technical documents (Chabalier, 2006). Studies were performed mainly using Wischmeier erosion plots, for 6 climatic zones in 20 sites, and at the catchment level in 11 sites. Experiments involved quantification of erosion extent, determination of Wischmeier equation parameters for local conditions, investigation on vegetation covering and agricultural practice effects (Chabalier, 2006). Most of the studies lasted 2–7 years. Long term experiments were rare because of logistic difficulties and maintenance cost.

Joint FAO/IAEA Prog

Journal of Environmental Radioactivity 115 (2013) 97-106

Assessment of soil erosion and deposition rates in a Moroccan agricultural field using fallout $^{137}\rm{Cs}$ and $^{210}\rm{Pb}_{ex}$

M. Benmansour^{a,*}, L. Mabit^b, A. Nouira^a, R. Moussadek^c, H. Bouksirate^c, M. Duchemin^d, A. Benkdad^a

^aCentre National de l'Energie des Sciences et des Technique Nucleaires (CNESTEN), Rabat, Morocco ^bEnvironmental Geosciences, Department of Environmental Sciences, University of Basel, Basel, Switzerland ^cInstitut National de la Recherche Agronomique (INRA), Rabat, Morocco ^dInstitut de Recherche en Agro-Environment (RDA), Quebec, Canada

ARTICLE INFO

Article history: Received 15 July 2011 Received in revised form 16 June 2012 Accepted 20 July 2012 Available online

Keywords: Morocco Soil erosion Radioisotopes ¹³⁷Cs ²¹⁰Pb_{ex} RUSLE 2

ABSTRACT

In Morocco land degradation — mainly caused by soil erosion — is one of the most serious agroenvironmental threats encountered. However, only limited data are available on the actual magnitude of soil erosion. The study site investigated was an agricultural field located in Marchouch (6°42′ W, 33° 47′ N) at 68 km south east from Rabat.

This work demonstrates the potential of the combined use of ¹³⁷Cs, ²¹⁰Ph_{ex} as radioisotopic soil tracers to estimate mid and long term erosion and deposition rates under Mediterranean agricultural areas.

The net soil erosion rates obtained were comparable, $14.3 \text{ t} \text{ ha}^{-1} \text{ yr}^{-1}$ and $12.1 \text{ ha}^{-1} \text{ yr}^{-1}$ for ^{137}Cs and $^{210}\text{Pb}_{ex}$ respectively, resulting in a similar sediment delivery ratio of about 92%. Soil redistribution patterns of the study field were established using a simple spatialisation approach. The resulting maps generated by the use of both radionuclides were similar, indicating that the soil erosion processes has not changed significantly over the last 100 years. Over the previous 10 year period, the additional results provided by the test of the prediction model RUSLE 2 provided results of the same order of magnitude. Based on the ^{137}Cs dataset established, the contribution of the tillage erosion impact has been evaluated with the Mass Balance Model 3 and compared to the result obtained with the Mass Balance Model 3 und compared to the result obtained with the Mass Balance Model 3.

field, tillage erosion under the experimental condition being the main translocation process within the site without a significant and major impact on the net erosion.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

With only 19% of its land arable, Morocco faces major environmental challenges and pressure on soil and water resources. This is true for many developing countries in Africa experiencing economic growth which is the consequence of urbanisation, limited funds available for natural resource management and a nascent legal and regulatory framework for environmental protection. Due to the intensification of agricultural practices leading to unsustainable farming practices (e.g. inappropriate tillage practices, straw exportation, overgrazing) and specific bioclimatic conditions (e.g. recurring and severe droughts), more than 15 million hectares of the Moroccan agricultural land is under on-site impact of erosion on the agricultural Moroccan landscape is the reduction of soil fertility, the main off-site impact being dominated by an increase of siltation processes in water reservoirs. It was estimated that out of 22.7 million hectares potentially exploitable in the Northern part of Morocco, 77% are exposed to very high erosion risks (Belkheri, 1988). The Global Assessment of Human Induced Soil Degradation (GLASOD) survey carried out during the 1980's by the United Nations Environment Programme (UNEP) and the International Soil Reference and Information Centre (ISRIC) established that the severity of human induced degradation has been classified as severe and very severe for more than 20% of the Moroccan territory (FAO, 2005).

In fact, around 100 million tons yr^{-1} of soil is lost and the

JAEA

WILEY 9

Received: 20 July 2017 Revised: 26 April 2018 Accepted: 13 May 2018

DOI: 10.1002/ldr.3016

SPECIAL ISSUE ARTICLE

Promoting the use of isotopic techniques to combat soil erosion: An overview of the key role played by the SWMCN Subprogramme of the Joint FAO/IAEA Division over the last 20 years

Lionel Mabit¹ I Claude Bernard² | Amelia Lee Zhi Yi¹ | Emil Fulajtar¹ | Gerd Dercon¹ | Mohammad Zaman¹ | Arsenio Toloza¹ | Lee Heng¹

¹ Soil and Water Management & Crop Nutrition Subprogramme, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agercy, 1400 Vienna, Austria

² Institut de recherche et de développement en agroenvironnement, Québec (Québec) Canada, G1P 3W8

Correspondence

L. Mabit, Soil and Water Management & Crop Nutrition Subprogramme, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, 1400 Vienna, Austria. Email: Lmabit@ieea.org

Abstract

The International Atomic Energy Agency (IAEA), through the Joint Division with the Food and Agriculture Organization (FAO) of the United Nations, assists its Member States in applying nuclear techniques to alleviate challenges in food safety, food security and sustainable agricultural development. The Soil and Water Management & Crop Nutrition (SWMCN) Subprogramme, within the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, has made significant contributions to the development of isotopic techniques for the assessment of soil degradation and the development of efficient soil and land conservation approaches. These techniques include fallout radionuclides such as ¹³⁷Cs, ²¹⁰Pb_{ex}, ⁷Be, and ²³⁹⁺²⁴⁰Pu as well as ¹³C stable isotope and compound-specific stable isotope analyses. These methodologies were developed and/or refined through the work of researchers from developed and developing countries who were selected to work within the frame of IAEA's Coordinated Research Projects (CRPs). Internal research activities implemented in the Joint FAO/IAEA's SWMCN Laboratory in Seibersdorf supported the work accomplished in the CRPs.

The methodologies thus developed have been subsequently disseminated to developing countries by IAEA's Technical Cooperation Programme to assist Member States to adopt climate-smart agriculture and reduce soil degradation that poses a threat to food security and the environment. This review paper provides an overview of the activities conducted in the frame of CRPs for combating soil erosion over the last 20 years and highlights the major achievements. Examples of the success and the impact obtained in Morocco, Madagascar, and Vietnam in using these isotopic techniques are presented.

KEYWORDS

climate change, fallout radionuclides, soil degradation, soil tracers, stable isotopes

MABIT ET AL

WILEY

8.1 | Assessing the effectiveness of terraced agriculture in Madagascar's agricultural highlands through the use of FRNs

Soil degradation-mostly due to soil ension-lis of national concern in Madagascar. According to the FAO, around one third of the island's total soil area is degraded (Nachtergele et al., 2011). To establish effective conservation strategies, trustworthy rates of soil ension/sedimentation under different Malagasy land uses are required.

In partnership with the "Institut National des Sciences et Techniques Nudéaires" (INSTN--Madagascar) based in Antananarivo, the SWMCN Subprogramme investigated soil erosion problems in order to strengthen the resilience and ability of the Malagas smallholder fammers to ensure food security. Thus, for the first time, fallout ¹³⁷Cs and ²¹⁰Pb_{lax} methods were tested effectively in Madagascar with the objective of investigating the effects of traditional agricultural practices utilized on hillslopes (Rabesiranan et al., 2016).

Soil erosion rates of an unprotected agricultural field and a terraced field were quantified in an experimental study area located in the eastern central highlands, 40 km east of Antananarivo (Photo 1). As reported by Rabesinnana et al. (2016), this pioneer use of FRNs (i.e., ¹³⁷Cs and ²¹⁰Pb_m) demonstrated that, in promoting the use of traditional terrace systems, soil erosion can be reduced by up to 40%. This Malagasy study also highlighted that traditional terracing could significantly limit the transfer of sediment and therefore the downstream potential off-site impact of the agro-ecosystems in allowing a better soil redistribution within the earcicutural fields.

8.2 | FRN techniques contribute to the improvement of soil conservation in Moroccan agro-ecosystems

In Morocco, reducing on-site and off-site impacts associated with soil erosion and fand degradation is a major concern for improving soil quality and protecting downstream water quality and quantity. Soil erosion is the main land degradation process in Morocco and affects at least 13% of its land area Nachtergaele et al., 2011).

In partnenhip with the SWMCN Subprogramme, the Centre National de l'Énergie des Sciences et Techniques Nuckäaires (CNESTEN) and its local Moroccan partners investigated soil degradation using FRN techniques (i.e., ¹³⁷Cs and ²Be) to contribute directly to agricultural decision making at the national level.

Photo 1. INSTN – Madagascar team performing soil sampling prior to ¹³⁷Cs and ²¹⁰Pb_{ex} determination by gamma spectroscopy for assessing soil erosion magnitude (© Naivo Rabesiranana, INSTN–Madagascar)

Joint FAO/IAEA Programme Nuclear Techniques in Food and Agriculture

Special cooperation

Exploitation of the results of TCPs for cooperation with international organizations and education institutions

Cooperation with International Institute for Applied Systems Analysis (IIASA) and University Colleague of London (UCL)

Working with IIASA's Resources and Environment Group.

Objectives: To test the use of soil erosion data based on FRN for validation of erosion model EPIC (USLE, RUSLE, MUSLE, MUSS) for erosion prediction at regional level

Steps undertaken:

- Participating on the IIASA Workshop (Laxemburg, October 24th, 2017)
 - Presenting information on the NAFA activities related to soil erosion
 - Discussing the work plan for cooperation
- Investigation of published data on soil erosion rates derived from FRN from tropical and arid regions (South China, South Asia, Australia, Africa and Latin America)
- Building the database, processing of metadata and data preparation for model validation

IIASA Workshop 'Joint Land Potential and Modeling Soil Erosion with EPIC in Humid and sub Humid Tropical Regions, October 24th, 2017

Presentations on NAFA Activities:

- Fulajtar, E.: Principles of fallout radionuclide methods (FRN) for soil erosion assessment with focus to Cs-137 method
- Fulajtar, E.: Soil erosion rates on tropical and sub-tropical regions estimated by FRN methods collected by IAEA and collaborating partners
- Fulajtar, E.: IAEA activities at the field of soil erosion and possible cooperation with IIASA

Carr, D., Skalsky, R., Balkovic, J. Example of erosion modelling at global scale using EPIC - *MUSS* (Modified Universal Soil [Loss Equation] Small [Watershed]) equation.

African Network for Soil Erosion, Fallout Radionuclides and Gamma Spectrometry

 \times +

Sea

Links

Phot

Dowi

https://atanasovs.000webhostapp.com

ation i 📔 👷 World Soil Day: Caring for tl 🛛 🔀 Assessment of soil redistribi 🛛 🗖 African network

K FOR SOIL EROSION, FALLOUT RADIONUCLIDES AND GAMMA

About Us

Africa, with 13% of the world's population, is projected to see 34% of the globe's population increase over the next 50 years. The population of the African continent is expected to rise from 0.91 billion now to 1.94 billion in 2050. Most of the population increases will occur in the countries, where the agriculture represents a major livelihood source for significant part of the population. Many African countries will face challenges to achieve food security in a sustainable manner, considering their available land area per capita, severe scarcity of fresh water resources and limited infrastructure and socio-economic conditions. These challenges will further became more difficult due to severe global soil degradation, in particular in Sub-Saharan Africa, and increased risks of soil erosion.

Establishing Regional Network in Africa (11 countries):

African Network for Soil Erosion, Fallout Radionuclides and Gamma Spectrometry

Objectives:

- Exchange of experience in gamma spectroscopy laboratory works and maintenance of equipment
- Exchange of experience in field work (sampling strategy, design and sample collection)
- Exchange of experience in data processing, interpretation, geostatistics and modelling
- Building information base on erosion spatial and temporal distribution in Africa

Steps undertaken:

- Establishing the network through the communication with member states
- Establishing website https://atanasovs.000webhostapp.com
- Starting to build database on soil erosion and initiating information exchange
- Communication towards the Land degradation group of UNEP

